

(Autonomous)

Affiliated to Periyar University, Salem. Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

Number of Courses Focusing on Employability/ Entrepreneurship/ Skill Development

Programme: B. Sc. MATHEMATICS

S.No.	Year	Total No. of Courses	Employability (1)	Entrepreneurship (2)	Skill development (3)	Total No. of Courses (1+2+3)
1.	2020-2021	31	4	1	5	10
2.	2019-2020	15	6	1	7	14
3.	2018-2019	43	4	1	5	10
4.	2017-2018	30	3	-	4	7
5.	2016-2017	14	2	w	2	4

Head of the Department

Head of the Department of Mathematics Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

MAHENDRA ARTS & SCIENCE COLLEG (alippatti (PO) - 637 501, Namakkal (DT) (Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

(Autonomous)

Affiliated to Periyar University, Salem. Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations - 2019)

Programme: B. Sc. MATHEMATICS

S. No.	Course Name	Course Code	Employability	Entrepreneurship	Skill development
1.	Mathematics For Competitive Examinations	M19UMA02			~
2.	Analytical Geometry 2D & 3D	M19PMA04	✓		
3.	Verbal And Non - Verbal Reasoning	M19UMAS01			✓
4.	Programming In C	M19UMAS02	✓		
5.	Algebraic Structures – I	M19UMA09	✓		7
6.	Numerical Methods	M19UMA11			✓
7.	Matlab	M19UMAS03			✓
8.	Real Analysis – II	M19UMA14	✓		~
9.	Quantitative Aptitude	M19UMAS04			✓
10.	Project	M19UMAPR1		√	

Head of the Department

Head of the Department of Mathemarice Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

MAHENDRA ARTS & SCIENCE COLLEC (Autonomous)

MAHENDRA ARTS & SCIENCE COLLEGE Kalippatti (PO) - 637 501, Namakkal (DT)

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2019)

Programme: B.Sc. MATHEMATICS

S.No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)
1.	Mathematics For Competitive Examinations	M19UMA02	Skill development	2019 - 2020
2.	Analytical Geometry 2D & 3D	M19PMA04	Employability	2019 - 2020
3.	Verbal And Non - Verbal Reasoning	M19UMAS01	Skill development	2019 - 2020
4.	Programming in C	M19UMAS02	Employability	2019 - 2020
5.	Algebraic Structures – I	M19UMA09	Employability	2019 - 2020
6.	Numerical Methods	M19UMA11	Skill development	2019 - 2020
7.	Matlab	M19UMAS03	Skill development	2019 - 2020
8.	Real Analysis – II	M19UMA14	Employability	2019 - 2020
9.	Quantitative Aptitude	M19UMAS04	Skill development	2019 - 2020
10.	Project	M19UMAPR1	Entrepreneurship	2019 - 2020

Head of the Department

Head of the Department of Mathematics
Mahendra Arts & Science College.

KALIPPATTI - 637 501.

Namakkal District.

Principal

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous) Kalippatti (PO) - 637 501, Namakkal (DT)

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act

1956

Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

BACHELOR OF SCIENCE

SYLLABUS FOR B.Sc. MATHEMATICS

OUTCOME BASED EDUCATION - CHOICE BASED CREDIT SYSTEM

For the students admitted from the Academic Year 2019-2020 onwards

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

alippatti (PO) 637 501, Namakkal (DT)

(Autonomous)
(Affiliated to Periyar University)

Department of Mathematics

REGULATIONS FOR B.Sc. MATHEMATICS DEGREE COURSE WITH SEMESTER SYSTEM AND CBCS PATTERN (Effective from the academic year 2019-2020)

Vision:

- 1. To enrich the Mathematical and Analytical skill of the student
- 2. To produce quality Mathematical science researches
- 3. To emphasis the students to apply the theoretical Mathematics to bring out as Mathematical models

Mission:

- 1. To inculcate moral values and ethical values.
- 2. To upgrade the students knowledge to meet the academic challenges.
- 3. To equip the students with the necessary mathematical tools to meet the competitive global environment.

I - PROGRAMME EDUCATIONAL OBJECTIVES:

PEO1: Graduates will have successful careers in Mathematics fields or will be able to successfully pursue higher studies.

PEO2: Graduates will apply their technical knowledge and skills to develop and implement solutions for the problems that accomplish goals to the industry, academic, government or research area.

PEO3: Contribute effectively to the Mathematics Profession by fostering effective interaction, ethical practices and communication skills, while pursuing education through lifelong learning.

II - PROGRAMME OUTCOMES / PROGRAMME SPECIFIC OUTCOMES:

PROGRAMME OUTCOMES (PO):

PO1: Provides a solid foundation in the discipline of Mathematics and enable students to formulate mathematical solutions to real life problems.

PO2: Under graduate students are to be passionately engaged in initial learning with an aim to think differently as agents of new knowledge,

understanding and applying new ideas in order to acquire employability/ self employment.

PO3: Under graduate students are trained to take up higher learning programmes.

PO4: Under graduate students are to be exposed to technical, analytical and creative skills.

PO5: Under graduate students are to be imparted with a board conceptual background in the Biological sciences/Computer sciences/ Languages and cultures / Management studies / Physical sciences.

PROGRAMME SPECIFIC OUTCOMES (PSO):

PSO1: Understand and apply mathematical concepts in various contexts related to science, technology, business, and industry.

PSO2: Acquire the knowledge to apply analytical and theoretical skills to model and solve mathematical problems.

PSO3: Formulate and develop mathematical arguments in a logical manner.

PSO4: Apply the critical thinking ability to carry out extended investigation and innovation of mathematical formulations.

III - REGULATIONS:

These regulations shall take effect from the academic year 2019-2020, i.e., for students who are to be admitted to the first year of the course during the academic year 2019-20 and thereafter.

1. Objectives of the Course:

Mathematics to-day is penetrating all fields of human endeavor and therefore it is necessary to prepare the students to cope with the advanced developments in various fields of Mathematics. The objectives of this course are the following:

- (a) To import knowledge in advanced concepts and applications in various fields of Mathematics.
- (b) To provide wide choice of elective subjects with updated and new areas in various branches of Mathematics to meet the needs of all students.

2. Eligibility for Admission:

A Pass in the Higher Secondary Examination of Tamil Nadu Higher Secondary Board or some other Board accepted by the Syndicate as equivalent thereto with Mathematics (other than Business mathematics) as one of the subjects.

3. Duration of the Course:

The candidates shall complete all the courses of the programme in 3 years from the date of admission. The programme of study shall consist of six semesters and a total period of three years with a minimum of 140 credits. The programme of study will comprise the course according to the syllabus.

4. Course of Study:

The course of study for the UG degree has been divided into the following five categories:

Part I: Tamil / Other Languages.

Part II: English Language.

Part III: Core Courses, Elective Courses and Allied Courses.

Part IV: Skill Enhancement Courses, Non-Major Elective Course,

Enhancement Compulsory Courses.

Part V: Value added Courses and Extension Activity.

5. Examinations:

The course of study shall be based on semester pattern with Internal Assessment under Choice Based Credit System.

The examinations for all the papers consist of both Internal (Continuous Internal Assessment - CIA) and External (End Semester) theory examinations. The theory examinations shall be conducted for three hours duration at the end of each semester. The candidates failing in any subjects(s) will be permitted to appear for the same in the subsequent semester examinations.

6. Structure of the Programme:

SEMESTER: I

Part	Course	Title of the	Title of the Course Code		s / ek	No. of	M	Iax. Ma	ark
	Category	Course		L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil – I / French – I / Hindi – I	M19UFTA01/ M19UFFR01/ M19UFHI01	5	-	3	25	75	100
II	LANGUAGE COURSE-II	English – I	M19UFEN01	5	-	3	25	75	100
III	CORE COURSE-I	Algebra and Trigonometry	M19UMA01	5	-	4	25	75	100
III	CORE COURSE-II	Mathematics For Competitive Examinations	M19UMA02	4	-	4	25	75	100
III	ALLIED COURSE-I	Allied I: Mathematical Statistics	M19USTA01	<mark>5</mark>	ı	4	25	75	100
III	ALLIED PRACTICAL –I	Allied Practical I: Mathematical Statistics	M19USTAP01	ı	2	-	_	-	ı
V	VALUE ADDED COURSE	Essential Grammar	M19UENVA02	2	ī	2	100	ı	100
IV	ENHANCEMENT COMPULSORY COURSE – I	Value Education – Yoga	M19UVE01	2	-	2	25	75	100
		Total		28	2	22	250	450	700

SEMESTER: II

	emesiek. II								
Part	Course Category	Title of the Course	Course Code	Hr: We	-	No. of Credits	IV.	Iax. Ma	ark
	Category	Course		L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil – II / French – II / Hindi – II /	M19UFTA02/ M19UFFR02/ M19UFHI02	5	ı	3	25	75	100
II	LANGUAGE COURSE-II	English – II	M19UFEN02	5	-	3	25	75	100
III	CORE COURSE-III	Differential Calculus & Integral Calculus	M19UMA03	6	ı	5	25	75	100
III	CORE COURSE-IV	Analytical Geometry 2D & 3D	M19UMA04	5	-	4	<mark>25</mark>	<mark>75</mark>	100
III	ALLIED COURSE-II	Allied II: Statistical Inference	M19USTA02	5	ı	4	25	75	100
III	ALLIED PRACTICAL –I	Allied Practical I: Mathematical Statistics	M19USTAP01	I	2	2	40	60	100
IV	ENHANCEMENT COMPULSORY COURSE – II	Environmental Studies	M19UES01	2	-	2	25	75	100
		Total		28	2	23	190	510	700

SEMESTER: III

Part	Course	Title of the Course	Course Code	Hr: We	s / ek	No. of	I	Iax. Ma	ark
	Category			L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil – III / French – III/ Hindi – III /	M19UFTA03/ M19UFFR03/ M19UFHI03	5	-	3	25	75	100
II	LANGUAGE COURSE-II	English – III	M19UFEN03	5	=	3	25	75	100
III	CORE COURSE-V	Differential Equations and Laplace Transforms	M19UMA05	4	-	4	25	75	100
III	CORE COURSE-VI	Statics	M19UMA06	5	_	4	25	75	100
III	ALLIED COURSE-III	Allied III: Physics – I	M19UPHA03	4	_	4	25	75	100
III	ALLIED PRACTICAL – II	Allied Practical II: Physics	M19UPHAP03	-	3	-	ı	-	-
IV	NMEC-I			2	-	2	25	75	100
IV .	SEC-I	Verbal and Non-Verbal Reasoning	M19UMAS01	2	·	<mark>2</mark>	<mark>25</mark>	<mark>75</mark>	100
		Total		27	3	22	175	525	700

SEMESTER: IV

Part	Course	Title of the Course	Course Code	Hr We	s / eek	No. of Credits	I	Iax. Ma	ark
	Category			L P		Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil – IV / French – IV / Hindi – IV /	M19UFTA04/ M19UFFR04/ M19UFHI04	5	П	3	25	75	100
II	LANGUAGE COURSE-II	English – IV	M19UFEN04	5	_	3	25	75	100
III	CORE COURSE-VII	Vector Calculus and Fourier Series	M19UMA07	4	-	4	25	75	100
III	CORE COURSE-VIII	Dynamics	M19UMA08	5	_	4	25	75	100
III	ALLIED COURSE-IV	Allied IV: Physics – II	M19UPHA04	4	-	4	25	75	100
III	ALLIED PRACTICAL –II	Allied Practical II: Physics	M19UPHAP03	ı	3	3	40	60	100
IV	NMEC-II			2	_	2	25	75	100
IV	SEC-II	Programming in C	M19UMAS02	2	_	2	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
V	EXTENSION ACTIVITIES	Extension Activities	M19UEX01	1	-	1	_	_	-
		Total		27	3	26	215	585	800

SEMESTER: V

Part	Course	Title of the Course	Course Code		s / eek	No. of Credits	Max. Mark			
	Category		Code	L	P	Credits	Int.	Ext.	Total	
III	CORE COURSE-IX	Algebraic Structures–I	M19UMA09	<mark>6</mark>	-	<mark>5</mark>	<mark>25</mark>	<mark>75</mark>	100	
III	CORE COURSE-X	Real Analysis – I	M19UMA10	6	-	5	25	75	100	
III	CORE COURSE-XI	Numerical Methods	M19UMA11	<u>5</u>		4	<mark>25</mark>	<mark>75</mark>	100	
III	CORE COURSE-XII	Operation Research –I	M19UMA12	6	-	4	25	75	100	
III	ELECTIVE COURSE	Elective – I		5	=	4	25	75	100	
\overline{IV}	SEC-III	Matlab	M19UMAS03	2		2	25	<mark>75</mark>	100	
		_	Total	30	_	24	150	450	600	

SEMESTER: VI

Part	Course	Title of the	Course Code	Hrs / Week		No. of Credit	N	Iax. Mar	k
	Category	Course	Code	L	P	s	Int.	Ext.	Total
III	CORE COURSE-XIII	Algebraic Structures-II	M19UMA13	6	-	5	25	75	100
III	CORE COURSE-XIV	Real Analysis – II	M19UMA14	<mark>6</mark>	-	<mark>5</mark>	<mark>25</mark>	<mark>75</mark>	100
III	CORE COURSE-XV	Complex Analysis	M19UMA15	6	-	4	25	75	100
III	CORE COURSE-XVI	Operation Research –II	M19UMA16	5	-	4	25	75	100
III	ELECTIVE COURSE	Elective – II		5	-	4	25	75	100
III	CORE PROJECT	Project	M19UMAPR1			2	<mark>40</mark>	<mark>60</mark>	100
IV	SEC-IV	Quantitative Aptitude	M19UMAS04	2		2	<mark>25</mark>	<mark>75</mark>	100
	Additional Credi courses (SWAYA			_	_	_	_	-	_
	(5,11111		Total	30	-	26	190	510	700
		0	RAND TOTAL	166	14	143	1170	3030	4200

Summary of Credits, Hours and Mark Distribution:

			N	o. of C	redit	s		Total	Total	No. of	Max.
Part	Course Name	I	II	ш	IV	v	VI	Credits	Hours	Courses	Marks
I	Language – I	3	3	3	3	_	-	12	20	4	400
II	Language – II	3	3	3	3	_	-	12	20	4	400
	Core Course	8	9	8	8	18	18	69	84	16	1600
	Elective Course	-	_	-	-	4	4	8	10	2	200
III	Project	-	_	-	-	-	2	2	-	1	100
	Allied Course	4	4	4	4	-	ı	16	18	4	400
	Allied Practical	-	2	-	3	-	-	5	10	2	200
	SEC	-	_	2	2	2	2	8	8	4	400
IV	NMEC	-	-	2	2	-	-	4	4	2	200
	Enhancement Compulsory Course	2	2	-	_	_	-	4	4	2	200
v	Value Added Course	2	-	-	-	-	-	2	2	1	100
•	Extension Activities	-	_	_	1	-	_	1	-	1	-
	Total	22	23	22	26	24	26	143	180	43	4200

ALLIED SUBJECTS FOR B.Sc. MATHEMATICS STUDENTS:

Semester	Course Title	Course Code				
I	Allied I: Mathematical Statistics	M19USTA01				
II	Allied II: Statistical Inference	M19USTA02				
11	Allied Practical I: Mathematical Statistics					
III	Allied III: Physics – I	M19UPHA03				
	Allied IV: Physics – II	M19UPHA04				
IV	Allied Practical II: Physics	M19UPHAP03				

ALLIED SUBJECTS OFFERED FOR OTHER MAJOR STUDENTS:

Semester	Course Title	Course Code
I	Allied I: Mathematics – I	M19UMAA01
	Algebra, Integral Calculus And Fourier Series	
	Allied II: Mathematics – II	M19UMAA02
II	Differential Equations And Laplace Transforms	
	Allied Practical - I - Mathematics	M19UMAAP01

ELECTIVE SUBJECTS FOR B.Sc. MATHEMATICS STUDENTS: (Students can choose any one of course from the given list)

Semester	ELECTIVE – I					
	Course Title	Course Code				
1 7	Discrete Mathematics	M19UMAE01				
V	Elementary Number Theory	M19UMAE02				
	Astronomy	M19UMAE03				
	ELECTIVE – II					
	Course Title	Course Code				
	Graph Theory	M19UMAE04				
VI	Mathematical Modeling	M19UMAE05				
	Probability Theory	M19UMAE06				

SKILL ENCHANCEMENT COURSES:

Semester	Course Title	Course Code
III	Verbal and Non - Verbal Reasoning	M19UMAS01
IV	Programming in C	M19UMAS02
V	Matlab	M19UMAS03
VI	Quantitative Aptitude	M19UMAS04

NON - MAJOR ELECTIVE COURSES: [FOR OTHER DEPARTMENTS]:

Semester	Course Title	Course Code
	1. Mathematics for Competitive	M19NMA01
III	Examination – I	
	2. Matrix Algebra	M19NMA02
IV	1. Mathematics for Competitive	M19NMA03
	Examination – II	
	2. Applied Numerical Methods	M19NMA04

VALUE ADDED COURSES: [FOR OTHER DEPARTMENTS]:

Semester	Course Title	Course Code
III	Verbal and Logical Reasoning	M19UMAVA01
IV	Quantitative Aptitude Examinations	M19UMAVA02

IV SCHEME OF EXAMINATION:

1. Question Paper Pattern for Theory Papers:

Time: Three Hours Maximum Marks: 75

Part A: $(10 \times 1 = 10)$

Answer ALL Questions (Two Questions from Each Unit)

Part B: $(5 \times 2 = 10)$

Answer ALL Questions (One Question from Each Unit)

Part C: $(5 \times 5 = 25)$

Answer ALL Questions (One Question From Each Unit with internal choice)

Part D: $(3 \times 10 = 30)$

Answer Any Three Questions out of Five Questions (One Question from Each Unit)

2. Question Paper Pattern for Practical Papers:

EXTERNAL MARK: 60 INTERNAL MARK: 40

QUESTION PATTERN

Answer all Questions (5x10 = 50)

Questions from each Unit Mark Allotment:

External - 60
Practical - 50 Record - 10
Internal - 40

3. Distribution of Marks:

The following are the distribution of marks for external and internal for End Semester Examinations and continuous internal assessment and passing minimum marks for Theory / Practical / Mini project / Project papers of UG programmes.

ESE	EA Total	Passing Minimum for EA	CIA Total	Passing Minimum for CIA	Total Marks Allotted	Passing Minimum (ESE)
Theory	75	30	25	10	100	40
Practical	60	24	40	16	100	40
Project	60	24	40	16	100	40

The following are the Distribution of marks for the Continuous Internal Assessment in Theory / Practical papers of UG programmes.

THEORY:

EVALUATION OF INTERNAL ASSESSMENT

Test : 15 Marks Assignment : 05 Marks Attendance : 05 Marks

Total: 25 Marks

The Passing minimum shall be 40% out of 25 marks (10 marks)

PRACTICAL:

EVALUATION OF INTERNAL ASSESSMENT

Test 1 : 15 Marks Test 2 : 15 Marks Record : 10 Marks

Total : 40 Marks

The Passing minimum shall be 40% out of 40 marks (16 marks)

PROJECT:

EVALUATION OF INTERNAL ASSESSMENT

Review 1 : 10 Marks Review 2 : 10 Marks Review 3 : 10 Marks : 10 Marks Pre-Viva

Total : 40 Marks

The Passing minimum shall be 40% out of 40 marks (16 marks)

4. Passing Minimum:

The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Theory Exam mark) with minimum of 30 marks in the End Semester Theory Examinations.

The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Practical Exam mark) with minimum of 24 marks in the End Semester Practical Examinations.

5. Submission of Record Note Books for Practical Examinations:

Candidates appearing for practical examinations should submit a bonafide record note books prescribed for practical examinations. The candidates failed to submit the record book shall not be permitted to appear for the practical examinations.

6. Project:

The following guidelines to be followed for the Project with Viva-voce:

- 1. The project should be valued for 60 marks by an external examiner; however the Viva-Voce examination should be conducted by both the external examiner appointed by the College and the internal examiner / guide / teacher concerned.
- 2. The Project Report may consist a minimum of 60 pages.
- 3. The candidate has to submit the Project Report 20 days before the commencement of the VI Semester Examinations.
- 4. A candidate who fails in the Project/Dissertation or is absent may resubmit the report, on the same topic, with necessary modification / correction / improvements in the subsequent Even Semester Examinations for evaluation and shall undergo viva-voce Examination.

7. Note:

a) SWAYAM / MOOC - Free Online Education:

SWAYAM / MOOC is an instrument for self-actualisation providing opportunities for a life-long learning. Here the student can choose from hundreds of courses, virtually every course taught at the college level, offered by the best teachers in India and elsewhere.

The students can choose an online SWAYAM / MOOC course during their period of study which will earn an extra credit and it will be transferred to the academic records of the students.

b) Add-on courses:

Students are provided with additional courses during their course of study right from the First year. Students are free to choose the courses. On successful completion of each course, the students will gain one extra credit.

Programme Code	: UMA	B.Sc. Mathematics	3	
Course Code: M19UMA01		Core Course – I - Algebra and Trigonometry		
Batch	Semester	Hours / Week Total Hours Credits		
2019- 2020	I	5	75	4

Course Objectives

This course introduces fundamental concepts such as matrix, theory of equations & vector calculus. It covers concepts such as Partial fractions Binomial, Exponential, Logarithmic Series, Symmetric, Skew Symmetric, Hermitian, Skew Hermitian, Orthogonal, Unitary matrices, Rank of a Matrix, consistency of Equations, Eigen values and Eigen vectors, Cayley – Hamilton theorem, Theory of equations and Trigonometry.. It provides technical skills to understand and develop various applications.

Course Outcomes (CO)

		Identify the logic behind the execution of various Characterizations
K1	CO1	in Matrices and Partial fractions Binomial, Exponential, Logarithmic
		Series.
VΩ	K2 CO2	Understand the concepts of Eigen values, vectors, rank and
KZ		Hamilton theorems.
K4	CO3	Analyze and discover the Theory of equations.
КЗ	CO4	Develop the idea about trigonometry and its problem.
КЗ	K3 CO5	Apply the concepts to solve hyperbolic function & Logarithm of a
NS COS	complex number .	

Unit I:

Partial fractions-Binomial -Exponential - Logarithmic Series(without Proof)- Symmetric-Skew Symmetric- Hermitian-Skew Hermitian- Orthogonal -Unitary matrices.

Unit II:

Rank of a Matrix-consistency of Equations-Eigenvalues and Eigen vectors- Cayley – Hamilton theorem (statement only) and its problems.

Unit III:

Polynomial equations – Imaginary and Irrational roots – relation between roots and coefficients of equations – Reciprocal equations – problems. To increase or decrease the roots of a given equation by a given quantity. Removal of terms - Descarte's rule of signs – problems.

Unit IV:

Expansions of $sin\theta$, $cos\theta$ and $tan\theta$ in terms of θ – Expansions of sin^n θ , $cos^n\theta$ and $tan^n\theta$.

UNIT V:

Hyperbolic and inverse hyperbolic functions and their properties – Logarithm of a complex number – problems.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Algebra, Calculus and Trigonometry	Dr.P.R.Vittal.	Margham publications,24,Ramesw aram Road, T.Nager, Chennai-600017.	2000

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Algebra-Volume I	T.K.Manicka	Vijay Nicole Imprints	2004
		vasagamPillai	Pvt, Ltd,#c-7,Nelson	
		and	Manickam	
		S. Narayanan.	Road,Chennai-600029	
2.	Trigonometry	T.K.Manicka	Vijay Nicole Imprints	2004
		vasagamPillai	Pvt, Ltd,#c-7,Nelson	
		and	Manickam Road,	
		S. Narayanan	Chennai-600029	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	M	M	S	S
CO3	M	S	M	S	S
CO4	S	S	S	M	S
CO5	S	M	S	M	M

S- Strong; **M**-Medium.

Programme Code	e: UMA	B.Sc. Mathematics		
Course Code: M19UMA02		Core Course – II - Mathematics for Competitive Examinations		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	I	<mark>4</mark>	<mark>60</mark>	<mark>4</mark>

Course Objectives

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such HCF, LCM, SQUARE ROOT, average, numbers, profit, loss, percentage, proposition & partnership. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO ₁	Identify the logic behind numbers and fractions
K2	CO2	Understand the concepts of Square root, cube root and average.
K2	CO3	Analyze the problems on numbers and problems on ages.
K2	CO4	Develop the problems on indices, percentage, Profit And Loss.
КЗ	CO5	Apply the concepts to solve a problem for Ratio and Proportion, Partnership.

Unit I:

Numbers - H.C.F and L.C.M. of numbers - Decimal fractions. (Section - I: 1, 2, 3)

Unit II:

Simplification - Square roots and Cube Roots - Average. (Section - I: 4, 5, 6)

Unit III:

Problems on numbers - Problems on Ages.

(Section - I: 7, 8)

Unit IV:

Surds and Indices - Percentage - Profit and Loss.

(Section - I: 9, 10,11)

Unit V:

Ratio and Proportion - Partnership. (Section - I: 12, 13)

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year Of
				Publication
1.	Quantitative Aptitude for	R.S.Aggarwal	S.Chand Co Ltd,152,	2001
	Competitive Examinations		Anna salai Chennai	

Mapping with Programme Outcomes:

COs	PO ₁	PO ₂	PO ₃	PO4	PO5
CO ₁	M	M	M	\mathbf{M}	M
CO ₂	S	M	M	M	S
CO ₃	M	S	M	S	S
CO ₄	S	M	S	\mathbf{M}	S
CO ₅	S	\mathbf{M}	S	${f M}$	S

S- Strong; **M**-Medium.

Programme Code	: UMA	B.Sc	. Mathematics		
Course Code: M1	9UVE01	ECC	– I - YOGA		
Batch Semeste		er	Hours / Week	Total Hours	Credits
2019-2020 I			2	30	2

பாடநோக்கம்:

இளம் வயது முதல், உடல், மனம் இரண்டையும் பக்குவமாக வைத்துக் கொள்ள வேண்டியதன் அவசியத்தை மாணவர்களுக்கு உணரச் செய்தல்.

அலகு 1:

யோகமும் உடல்நலமும்:

உடலமைப்பு – எளியமுறை உடற்பயிற்சி – மகராசனம் - யோகாசனங்கள்

அலகு 2:

இளமைகாத்தல் - பாலுணர்வும் ஆன்மீகமும் - மனதின் 10 படிநிலைகள் - மன அலைச்சுழல்.

அலகு 3:

குணநலப்பேறு:

வாழ்வின் நோக்கம் - எண்மை ஆராய்தல் - ஆசை சீரமைத்தல் -சினம் தவிர்த்தல்.

அலகு 4:

கவலை ஒழித்தல் - வாழ்த்தும் பயனும் - நட்பு நலம் - தனிமனித அமைதி.

அலகு 5:

செயல்விளைவுத் தத்துவம் - மனத்தூய்மை, வினைத்தூய்மை — அன்பும் கருணையும் - பண்பாட்டுக் கல்வி.

பாடநூல்: 'மனவளக்கலை யோகா'

உலக சமுதாய சேவா சங்கம்

வேதாத்திரி பதிப்பகம்

156, காந்திஜி ரோடு

жвлгв - 638 001.

போன்: 0424 — 2263845.

பார்வை நூல்கள்:

மனவளக்கலை யோகா –ஐ - உலக சமுதாய சேவா சங்கம்.

மனவளக்கலை யோகா —ஐஐ- வேதாத்திரி பதிப்பகம்

மனவளக்கலை யோகா –ஐஐஐ-156, காந்திஜி ரோடு

எளிமுறை உடற்பயிற்சி - ஈரோடு — 638 001.

யோகப்பயிற்சிகள் - போன்: 0422-2263845

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA03		Core Course – III- Differential Calculus & Integral Calculus			
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	II	6	90	5	

Course Objectives

This course introduces fundamental concepts of differential and integral calculus. It covers concepts such as successive differentiation, Radius of curvature, integration by parts, Multiple integral, change of order of integration and applications of differential and integral calculus. It provides technical skills to understand and study various concepts about calculus.

Course Outcomes (CO)

K1 CO1	Identify the logic behind the differentiation and successive	
		differentiation.
K2	CO2	Understand the Radius of curvature and related problems.
K4	CO3	Analyze the integration concepts and integration by parts.
K3 CO4		Develop the idea about reduction formulae and multiple integrals
		and its problems.
K3 CO5		Apply the change of order of integration concepts to solve a real-
$\mid \mathbf{x}_2 \mid \mathbf{co}_2$	CO3	time problem using Jacobians and convergence ideas.

UNIT I: Differential Calculus:

Definition and Notations – n^{th} derivatives – Standard forms – Partial fractions – Trigonometric transformations – Leibnitz's theorem on the n^{th} derivatives – Problems.

UNIT II:

Radius of curvature in Cartesian and polar forms-Pedal equations-Evolutes and Envelopes.

UNIT III: Integral Calculus:

Integration by parts .Definite integral, Reduction formulae.

UNIT IV:

Multiple Integral - Evaluation of double and triple integrals.

UNIT V:

Change of order of integration in double integral- Jacobians- Change of variables in double and triple integrals-Notion of improper integrals.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Allied Mathematics	Dr. P.R. Vittal	Margham Publications, Chennai.	1999.

REFERENCE BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Mathematics for BSc – Vol I and II	Kandasamy & K. Thilagavathy	S. Chand and Co.	2004

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	M	M	S
CO3	M	M	S	M	S
CO4	S	S	S	S	M
CO5	S	S	M	S	S

S- Strong; **M**-Medium.

Programme Code: UMA		B.Sc. Mathematics			
Course Code: M19UMA04		Core Course – IV- Analytical Geometry 2D & 3D			
Batch Semester		Hours / Week	Total Hours	Credits	
<mark>2019-2020</mark>	II	5 75 4			

Course Objectives

This course introduces fundamental concepts of Analytical geometry 2D & 3D. It covers concepts such as Straight lines, planes, tangent, normal, Sphere, cone & cylinder. It provides technical skills to understand and study various concepts geometry.

Course Outcomes (CO)

K1	CO1	Identify the logic behind the straight lines
K2	CO ₂	Understand the polar co ordinates, Straight line & Conic
K4	CO3	Analyze the concept of straight lines in 3D, co planarity and
K4	CO ₃	shortest distance between two lines.
K3	CO4	Develop the idea about the sphere, tangent plane to the sphere
KS	CO4	and equation of the conic.
K3	CO5	Apply the cone and cylinder concepts to the 3D problems.

UNIT I:

Analytical geometry of 2D - Straight line - Simple problems

UNIT II:

Analytical geometry of 2D - Polar coordinates – Equation of Straight Line - Polar Equation of a conic.

UNIT III:

Analytical Geometry 3D – Stright lines - Coplanarity of straight lines shortest distance (S.D) and Equation of S.D between two lines - simple problems.

UNIT IV:

Sphere: standard equation of sphere - Results based on the properties of a sphere - Tangent plane to a sphere- equation of a circle.

UNIT V:

Cone and cylinder: Cone whose vertex is at the origin - Envelope cone of a sphere - Right circular cone - Equation of a cylinder - Right circular cylinder.

TEXT BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Analytical Geometry of 2D (Unit I & II)	T. K. Manicka vasagamPillay	Viswanathan Publications.	2005
2.	Analytical Geometry (Unit III, IV & V)	P. DuraiPandian	Emerald Publications	<mark>2003</mark>

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	<mark>S</mark>	M
CO2	S	S	S	${f M}$	S
CO ₃	M	M	M	M	S
CO4	S	S	S	M	S
CO5	S	M	M	S	M

S- Strong; **M**-Medium.

Programme Code	: UMA	B.Sc	. Mathematics		
Course Code: M1	9UES01	ECC	- II - ENVIRONMEN	NTAL STUDIES	
Batch	Semeste	er	Hours / Week	Total Hours	Credits
2019-2020	II		2	30	2

Unit I: Fundamentals:

Environment – Definition, Scope, Structure and Function of Ecosystems– Producers, Consumer and Decomposers – Energy Flow in the Ecosystem – Ecological Succession – Food Chain, Food Webs and Ecological Pyramids – Concept of Sustainable Development.

Unit II: Natural Resources:

Renewable Resources – Air, Water, Soil, Land and Wildlife resources, Non-Renewable Resources, Coal, Oil and Natural Gas, Environment problems related to the extraction and use of Natural Resources.

Unit III: Biodiversity:

Biodiversity – Definition – Values – Consumption use, Production Social, Ethical, Aesthetic and Option Values Threats to Biodiversity – Hotspots of Biodiversity – Conservation of Biodiversity: In-situ, Ex-situ, Bio-Wealth National and Global Level.

Unit IV: Environmental Pollution:

Definition – Causes, Effects and Mitigation Measures – Air, Water, and Soil Pollution, Noise Pollution, Thermal pollution, Nuclear Hazards, Solid Wastes, Acid Rain, Climate change and Global Warming, Environmental Laws and Regulations in India – Earth summit.

Unit V: Pollution and Environment:

Population Explosion – Environment and Human Health – HIV/AIDS – Women and Child Welfare – Resettlement and rehabilitation of people, Role of Information Technology in Environmental Health – Environment Awareness, Environmental Awareness, Environment Disaster Management – Fire Safety and Prevention.

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA05		Core Course – V- Differential Equations And Laplace Transforms			
Batch Semester		Hours / Week	Total Hours	Credits	
2019-2020 III		4	60	4	

Course Objectives

This course introduces fundamental concepts of differential equations. It covers concepts such as Linear differential equations with constant coefficients and variable coefficients, Exact differential equations, Clairaut's form, Partial differential equations, Laplace transform, inverse Laplace transform. It provides technical skills to understand and study various concepts in differential equations.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of differential equations
K2	CO2	Understand the exact differential equations and Clairaut's form.
К3	CO3	Demonstrate understanding of the importance of partial
K3 CO3		differential equations.
К3	CO4	Develop the idea about the Laplace transform and its properties
KS	CO4	and simple problem.
К3	CO5	Understanding the inverse Laplace transform and its problem.

Unit I: Differential Equations:

Differential Equations - Linear differential equations with constant coefficients – The operators D and D $^{-1}$ – Particular Integral – Special methods of finding particular integral – Linear equations with variable co-efficients – To find the particular integral – Special method of evaluating the particular integral when x is of the form x^m .

Unit II:

Exact differential equations – conditions of integrability of Mdx + Ndy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating factors – equations of the first order but of higher degree – Solvable for x, y, dy/dx – Clairaut's form – equations that do not contain x explicitly – Equations that do not contain y explicitly- Equations homogeneous in x & y.

Unit III:

Partial differential equations - Derivation of partial differential equations by elimination of constants, arbitrary functions - Different Integrals of P.D.E. - Solutions of P.D.E. in some simple cases- Standard types of first order equations - Standard I, II, III, IV - Equations reducible to the standard forms - Lagrange's equation.

Unit IV: Laplace Transforms:

The Laplace Transforms – Sufficient conditions for the existence of the Laplace Transforms – Laplace Transforms of periodic functions – General theorems – Evaluation of certain integrals using Laplace Transforms.

Unit V:

The inverse Laplace transforms – Inverse Laplace transforms of functions – Method of partial fractions – Applications of Laplace Transforms to solve ordinary differential equations.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Calculus Volume III	S. Narayanan & T. K. Manicka vasagam Pillay	S. Viswanathan Pvt. Ltd.	2008

```
Unit I - Chapter 2 § 1, 1.2, 2, 3, 4, 8, 8.1,8.2,8.3
```

Unit II - Chapter 1 § 3.1 – 3.3, 4, 5, 5.1 – 5.5, 6.1, 7.1 - 7.3

Unit III - Chapter 4 § 1, 2, 2.1, 2.2, 3, 4, 5, 5.1 - 5.5, 6

Unit IV - Chapter 5 § 1, 1.1, 1.2, 2, 3.4, 5

Unit V - Chapter 5 § 6, 7, 8, 9

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Differential Equations and Laplace Transforms	P. R. Vittal	Margham Publications	2004
2.	Differential Equations and Integral Transforms	S. Sudha	Emerald Publishers	2003

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	S
CO2	M	S	S	M	S
CO3	M	S	M	M	S
CO4	S	M	M	S	S
CO5	S	M	M	M	S

S- Strong; **M**-Medium.

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA06		Core Course - VI- STATICS			
Batch Semester		Hours / Week	Total Hours	Credits	
2019-2020 III		5	75	4	

Course Objectives

This course introduces fundamental concepts of Mechanics. It covers concepts such as Law of forces, moments, frictions and centenary. It provides technical skills to understand and study various concepts in statics.

Course Outcomes (CO)

K1	CO1	Law of forces and their properties.
K2	CO2	Understand the concept of moments and couples.
КЗ	CO3	Analyze the concept of Equilibrium of three forces
К3	CO4	Develop the idea about Friction laws and its properties.
K4	CO5	Understanding the catenary and its common properties and its real life problems.

UNIT I:

Forces acting at a point - Parallelogram of forces - Triangle of forces - Lami's Theorem - Extended form of the parallelogram of law of forces - Resultant of any number of coplanar forces acting at a point.

UNIT II:

Resultant of two like and unlike parallel forces acting on a rigid body – Moments of a force – Varignon's Theorem of moments – Couple – Equilibrium of two couples.

UNIT III:

Equilibrium of three forces acting on a rigid body – Three coplanar forces – Two trigonometrical theorems – Coplanar forces – Reduction of any number of coplanar forces – Conditions for a system of forces to reduce to a single force or to a couple – Equation to the line of action of the resultant.

UNIT IV:

Friction – Laws of friction – Co-efficient of friction, angle and cone of friction – Equilibrium of a particle on a rough inclined plane under any forces – Problems on friction.

UNIT V:

Uniform string under the action of gravity - Equilibrium of strings and chain under gravity - Equation of common catenary - Tension at any point - Geometrical properties of the common catenaries - Problems.

TEXT BOOK:

S.No	Title of the Book	Author	Publiser	Year of Publication
1.	Statics	M.K. Venkatraman	Agasthiar Publication	1999

UNIT I Chapter 2 Sections 3 - 5, 9, 10 and 15

UNIT II Chapter 3 Sections 1 - 4, 7, 8, 12 and Chapter 4 Sections 1, 2

UNIT III Chapter 5 Sections 1, 2, 5 and Chapter 6 Sections 1, 2, 3, 5 and 8

UNIT IV Chapter 7 Sections 1 - 8, 10 and 13

UNIT V Chapter 11 Sections 1 – 6

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Statics	A.V. Dharmapadam	Agasthiar Publication S.Viswanath an Printers & Publishers Pvt. Ltd	2009
2.	Mechanics	P. Duraipandian, Laxmi Duraipandian. Muthamizh Jayapragasam	S. Chand & Company Ltd	2010

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	M
CO2	S	S	S	M	S
CO3	M	M	M	S	M
CO4	S	M	M	S	S
CO5	M	M	S	M	S

S- Strong; **M**-Medium.

SKILL ENHANCEMENT COURSE - I

Programme Code	: UMA	B.Sc. Mathematics		
Course Code: M19UMA07		Core Course - VII- Verbal and Non - Verbal Reasoning		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	I	5	<mark>75</mark>	4

Course Objectives

This course introduces fundamental concepts of aptitude. It covers concepts such as Series Completion, Coding Decoding, Blood Relations, Direction Sense Test, Logical Venn Diagrams, Mathematical Operations, Logical Sequence of Words, Inserting the Missing Character, Assertion and Reason and Verification of Truth of the Statement. It provides technical skills to understand and study various concepts in verbal reasoning.

Course Outcomes (CO)

K1	CO ₁	Series Completion, Coding Decoding and their properties.
K2	CO ₂	Understand the concept of Blood Relations and Direction Sense Test.
K3	CO3	Classification, Analytical reasoning and their properties.
K3	CO4	Analyze the concept of Mirror images, Water images.
K3	CO ₅	Develop the ideas about incomplete

Unit I:

Series Completion - Coding Decoding. (Section - I: 1, 4)

Unit II:

Blood Relations –Direction Sense Test. (Section - I: 5, 8)

Unit III:

Classification – Analytical Reasoning. (Section – II: 3, 4)

Unit IV:

Mirror Images – Water Images. (Section – II: 5, 6)

Unit V:

Completion of Incomplete Pattern (Section – II: 8)

Text Book:

S.No	Name of the	Author	Publisher	Year Of
	Book			Publications
1 .	Verbal and	R.S.Aggarwal	S.Chand Co	2001
	Non-Verbal		Ltd,152,	
	Reasoning		Annasalai,	
			Chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	\mathbf{M}
CO ₂	S	S	S	\mathbf{M}	S
CO ₃	M	S	M	S	${f M}$
CO4	S	M	M	S	S
CO5	S	M	S	${f M}$	S

S- Strong; **M**-Medium.

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M	19UMA07	Core Course – VII- VECTOR CALCULUS AND FOURIER SERIES		AND	
Batch	Semester	Hours / Week Total Hours Credits			
2019-2020	IV	4 60 4			

This course introduces fundamental concepts of calculus. It covers concepts such as vector calculus and Fourier Series. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of Gradient, directional derivative of scalar point functions, Equations of tangent plane
K2	CO2	Understand the Vector point function.
K4	CO3	Demonstrate understanding of the Fourier series.
K3	CO4	Develop the idea about the Half Range sine series.
КЗ	CO5	Understanding the applications Fourier integral.

Unit I:

Partial derivative of vector function – Gradient- directional derivative of scalar point functions -Equations of tangent plane and Gradient -directional derivative of scalar point functions-Equations of tangent plane - Gradient - directional derivative of scalar point functions -Equations of tangent plane - and normal line to a level surface.

Unit II:

Vector point function: Divergence and curl of a vector point function – Solenoidal and irrational functions – Physical interpretation of divergence and curl of a vector point function - Problems. Gauss-Divergence Theorem (Statement only) – Problems-Green's Theorem (Statement only) Problems. Stoke's Theorem (Statement only) -Problems.

UNIT III:

Dirichlet's Conditions – General Fourier series – Odd and Even functions - Harmonic analysis.

UNIT IV:

Half Range sine series – Half range cosine series – Complex form of fourier series – Parseval's identity.

UNIT V:

Fourier integral theorem – Fourier transform pair – Sine and cosine transforms – Properties of Fourier transforms - Simple functions – Convolution theorem – Parsevals identity.

TEXT BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1	Vector Analysis (UNIT- I&II)	P. R. Vittal and V. Malini,	Margham Publications, Chennai,	2006.
2	Transforms and Partial Differential Equations (UNIT-III ,IV &V)	Dr. A. Singaravelu	Meenakshi Agenc, Chennai.	June, 2012.

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	M	M	S
CO3	S	S	M	S	S
CO4	S	M	S	M	S
CO5	S	M	M	S	S

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA08		Core Course - VIII- DYNAMICS			
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	IV	5 75 4			

This course introduces fundamental concepts of Mechanics. It covers concepts such as velocity , acceleration, projectile, impact, SHM and central orbits. It provides technical skills to understand and study various concepts in Dynamics.

Course Outcomes (CO)

K1	CO1	Basic concepts of velocity and acceleration.
K2	CO2	Behavior of motion of objects. Applications of Projectile in practical problems
K2	CO3	Analyze the Behavior of elastic bodies in real life problems.
КЗ	CO4	Develop the idea about Simple Harmonic Motion and its Applications.
K4	CO5	Law of forces in central orbit and Law of inverse square.

UNIT I:

Kinematics - Speed, Displacement - Velocity - Composition of velocities - Triangle of velocities - Relative velocity - Angular velocity - Relative angular velocities - Accelerations - Motion in a straight line under uniform acceleration - Simple problems.

UNIT II:

Projectiles – Path of the projectile is a parabola – Characteristics of the motion of a projectile – Velocity of the projectile in magnitude and direction at the end of time – Range on an inclined Plane – Simple problems.

UNIT III:

Collision of elastic bodies – Newton's experimental law – Impact of a smooth sphere on a fixed smooth plane – Direct impact of two smooth spheres – Loss of Kinetic Energy – Oblique impact of two smooth spheres and loss of Kinetic Energy – Simple problems.

UNIT IV:

Simple harmonic motion - Simple harmonic motion in a straight line - General solution of a simple harmonic motion - Composition of two simple harmonic motions of the same period and in the same straight line - Composition of simple harmonic motions of the same period in two perpendicular directions - Simple problems.

UNIT V:

Motion under the action of central forces – Velocity and acceleration in polar coordinates – Differential equation of central orbits – Pedal equation of the central orbit – Law of the inverse square – Simple problems.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	A Text Book of	M. K. Venkatraman	Agasthiar	1970
	Dynamics		Publications	

UNIT I Chapter III Sections 3.1 to 3.4, 3.7, 3.10, 3.11, 3.15, 3.17 and 3.22

UNIT II Chapter IV Sections 6.2, 6.4, 6.5, 6.9 and 6.12

UNIT III Chapter VIII Sections 8.3 - 8.8

UNIT IV Chapter X Sections 10.2, 10.3, 10.6 and 10.7

UNIT V Chapter XI Sections 11.2, 11.4, 11.6, 1

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Dynamics	M.L. Khanna	Jai Prakash	Tenth
			Nath and	Edition
			Company,	(1975)
			Meerut.	
2.	Dynamics	K.Visvanatha Naik	Emerald	1992
		and	Publishers,	
		M.S. Kasi	Chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	M	S	M	M	S
CO3	M	M	S	S	M
CO4	S	M	M	M	S
CO5	M	S	S	M	S

SKILL ENHANCEMENT COURSE - II

Programme Code: UMA		B.Sc. Mathematics			
Course Code: M19UMASO2		SEC-II - PROGRAMMING IN C			
Batch	Semester	Hours / Week Total Hours Credits			
2019-2020	IV	2 30 2			

Course Objectives

This course introduces the student to gain knowledge on various services of programming in C. It also presents various sample programs.

Course Outcomes (CO)

K2	CO1	Understand the basic concepts of C language
K3		Apply different types of decision making statements in c
		<mark>program</mark>
K1	CO3	Remember different types of String handling function
K4	CO4	Analyze different kinds of Arrays and functions
K5	CO5	Evaluate the concepts in C Programming

UNIT I:

Overview of C: History of C – Basic structure of C programs. Character Set - C Tokens – Keywords and identifiers – Constants – Variables-Declaring of Variables-Assigning Values to Variables – Data types – Operators - **Managing Input and Output Operations**: Reading a Character - Writing a Character -Formatted Input-Formatted Output.

UNIT II:

Decision Making and Branching: Simple IF, IF-ELSE, Nesting of IF-ELSE, ELSE-IF ladder, Switch statements – GOTO statements. **Decision Making and Looping**: WHILE statement – DO statement – FOR statement – Jumps in loops.

UNIT III:

Strings: Declaring and initializing string variables –Reading strings from terminal – Writing strings to screen-Comparision of Two Strings – String handling functions - Table of Strings.

UNIT IV:

Arrays: Definition - Declaration of arrays- Intialization of arrays- One dimensional arrays - Two dimensional arrays - Multi Dimensional Arrays. **User-Defined functions**: Introduction - Defining a function - Return values and their types - Function calls - Function declaration - All category of functions - Recursion.

UNIT V:

Simple program using - Operators - IF statement - Nested if Statement - Switch Statements - FOR loop - While loop - Do- While loop- String handling Functions - Arrays - Recursion.

TEXT BOOK:

S.no	Author	Title of Book		Publisher	Year of Publication
1.	E.Balagurusamy	Programming ANSI C	in	<mark>Tata</mark> McGraw Hill	6th Edition

REFERENCE BOOKS:

S.no	Author	Title of Book	Publisher	Year of Publication
1.	Yashavant Kanetkar	Let Us C	BPB Publications	13th Edition
<mark>2.</mark>	D.Ravichandran	Programming in ANSI C	New Age International (P) Ltd	11 th Edition

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4
CO ₁	S	M	S	M
CO2	M	M	S	S
CO3	S	S	M	M
CO4	S	M	S	S
CO5	M	S	S	M

Programme Code	e: UMA	B.Sc. Mathematics			
Course Code: M19UMA09		Core Course - IX- ALGEBRAIC STRUCTURES - I			
Batch	Semester	Hours / Week Total Hours C		Credits	
<mark>2019-2020</mark>	v v	<mark>6 90</mark> 5			

This course introduces fundamental concepts of Algebraic structures. It covers concepts such as groups, cyclic groups, normal groups, homomorphism, Automorphism, rings, integral domain, field and Principal ideal Ring. It provides technical skills to understand and study various concepts in algebra.

Course Outcomes (CO)

K2	CO ₁	Acquiring knowledge of basic abstract systems of Mathematics.				
K2	CO ₂	Understand the normal sub group and Quotient groups.				
K4	CO3	Demonstrate understanding of the importance of homomorphism				
N+	CO3	and isomorphism in groups.				
K3	Develop the idea about the rings, integral domain, field and maximal ideal.					
NO.						
<mark>КЗ</mark>	CO5 Understanding the Field of Quotient of an Integral Domain,					
KS	CO ₃	Euclidean Rings, Principal ideal Ring.				

Unit I:

Group – Definition – Examples – Some Preliminary lemmas – Problems – Subgroups – definition – lemmas – Cosets – definition – theorems – Cyclic group – Lagrange's Theorem – order of an element – Euler's Theorem – Fermat's Theorem. (Sections 2.1 to 2.4).

Unit II:

A Counting Principle – Normal Sub Groups – Definition – Properties – Problems – Quotient groups – Definitions – Lemma. (Sections 2.5 and 2.6).

Unit III:

Homomorphism – Definition – Examples - Lemmas - Kernal of a homomorphism – Fundamental theorem – Automorphism – Definition – Inner Automorphism – Lemmas – Examples – Cayley's Theorem. (Sections 2.7 – 2.9 excluding application 1 & 2).

Unit IV:

Ring – Definition – Examples – some special classes of Rings – Zero Divisor – Integral Domain - Field - Definition –Examples-Ideals – Quotient Rings – Maximal ideal.(sections 3.1, 3.2, 3.4 & 3.5).

Unit V:

The Field of Quotient of an Integral Domain – Euclidean Rings – Definition –Principal ideal Ring – Greatest common divisor – Properties – Unique factorization theorem (sections 3.6 & 3.7).

TEXT BOOK:

S.No	Title of the	Author	Publisher	Year of
	<mark>Book</mark>			Publication
1.	Topics in	I.N.Herstein.	<mark>John Wiley,</mark>	1975
	<mark>Algebra</mark>		<mark>Newyork.</mark>	

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	A first course in modern	A.R.Vasistha	<mark>Krishna</mark>	1983
	<mark>algebra</mark>		<mark>PrekasanMandhir,</mark>	
			9, Shivaji Road,	
			Meerut(UP)	
<mark>2.</mark>	Modern Algebra	M.L.Santiago	Tata McGraw Hill,	1994
			<mark>New Delhi.</mark>	
<mark>3.</mark>	Modern Algebra	K.Viswanatha	Emerald	1988
		<mark>Naik</mark>	Publishers, 135,	
			<mark>Anna Salai,</mark>	
			Chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO ₂	PO3	PO4	PO5
CO1	S	M	S	M	S
CO ₂	S	S	M	M	S
CO ₃	S	S	M	S	S
CO4	M	S	M	S	S
CO5	S	M	M	S	S

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA10		Core Course – X -REAL ANALYSIS - I			
Batch	Semester	Hours / Week Total Hours		Credits	
2019-2020	v	6 90 5		5	

This course introduces fundamental concepts of Real Analysis. It covers concepts such as Functions, Sequence, Series, Metric space and Continuous. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes (CO)

K1	CO1	Basic concepts of functions and sequence
K2	CO2	Understand the bounded sequence, monotone sequence, limit superior and inferior
K4	CO3	Analyze the concept of series and tests for absolute convergence.
КЗ	CO4	Develop the idea about the Metric space and limits in metric space
K4	CO5	Understanding the continuous functions in metric spaces, Open sets and closed sets and discontinuous

Unit I:

Functions – Real Valued functions – Equivalence – Countablity – Real Numbers – Least upper bounds. (Sections 1.3 to 1.7) Sequence of real numbers – Definition of sequence and subsequence – Limit of a sequence – Convergent sequences – Divergent Sequences. (Section 2.1 to 2.4)

Unit II:

Bounded sequences – Monotonic sequences – operations on convergent sequences – operations on Divergent sequences – Limit superior and limit inferior – Cauchy sequences. (Section 2.5 to 2.10)

Unit III:

Series of real numbers – convergence and divergence – series with non negative terms – alternating series – conditional convergence and absolute convergence – Rearrangement of series – Test for absolute convergence – series whose terms form a non increasing sequence. (Sections 3.1 to 3.7)

Unit IV:

Limits and Metric spaces – limit of a function on the real line – metric spaces limits in metric spaces (sections 4.1 to 4.3)

Unit V:

Continuous functions on metric spaces- Functions continuous at a point on the real line – Reformulation – functions continuous on a metric space – open sets – closed sets – Discontinuous functions on R'. (Sections 5.1 to 5.6).

TEXT BOOK:

S.No	Title of the	Author	Publisher	Year of
	Book			Publication
1.	Methods of	Richard R.	Oxford &	1970
	Real	Goldberg .	IBH	
	Analysis		Publishing	
			Co.Pvt.Ltd.	

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	A First course in Real	Sterling K	Springer (India)	2004
	Analysis .	.Barberian.	Private Limited,	
			New Delhi.	
2.	Mathematical Analysis	Tom M. Apostel	Narosa	2002
			Publications,	
			NewDelhi	
3.	Real Analysis	M.S.Rangachari	New Century	1996
			Book House,	
			chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	M	M	S	M	S
CO3	M	M	M	S	M
CO4	S	M	M	S	S
CO5	S	S	S	S	S

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMA11		Core Course - XI- NUMERICAL METHODS		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2020	V	<mark>5</mark>	<mark>75</mark>	4

This course introduces fundamental concepts of Numerical methods. It covers concepts such as Bisection method, Iteration method, Regular Falsi method, Newton-Raphson method, Direct methods, Gauss elimination method, Gauss-Jordan method, Iterative methods, Jacobi method, Gauss-Seidal method, Gregory-Newton interpolation formulae, Interpolation with unequal intervals, Lagrange's interpolation formula, Inverse interpolation, Trapezoidal rule, Simpson's one third rule, Simpson's three-eighth rule, Taylor series method, Euler's method, Runge- Kutta methods-2nd Order, Runge- Kutta methods-3rd Order, Runge- Kutta methods-4th Order. It provides technical skills to understand and study various concepts in Numerical analysis.

Course Outcomes (CO)

K1	CO ₁	Acquiring knowledge of basic idea of the solution of algebraic and transcendental equations.
K2	CO ₂	Understand the Solution of simultaneous linear algebraic equations.
K2	CO ₃	Demonstrate understanding of the importance of interpolation
КЗ	CO4	Develop the idea about the Numerical differentiation and integration.
КЗ	CO5	Understanding the Numerical solution of ordinary differential equation

Unit I:

Introduction to numerical analysis - The solution of algebraic and transcendental equations - Bisection method - Iteration method - Regular Falsi method, Newton-Raphson method.

Unit II:

Solution of simultaneous linear algebraic equations – Direct methods – Gauss elimination method – Gauss-Jordan method – Iterative methods – Jacobi method – Gauss-Seidal method.

Unit III:

Finite differences - Interpolation for equal intervals – Gregory Newton interpolation formulae – Interpolation with unequal intervals – Lagrange's interpolation formula – Inverse interpolation.

Unit IV:

Numerical differentiation and integration — Newton's formulae to compute the derivative — Numerical integration — A general quadrature formula — Trapezoidal rule - Simpson's one third rule — Simpson's three-eighth rule.

Unit V:

Numerical solution of ordinary differential equation — Taylor series method — Euler's method — Runge- Kutta methods-2nd Order - Runge- Kutta methods-4th Order -Predictor corrector methods.

TEXT BOOK:

S.No	Title of the	Author	Publisher	Year of
	Book			Publication
1.	Numerical	P.Kandasamy,	Chand &	2009
	Methods	K.Thilagavath,	Company	
		K.Gunavathy	limited,	
			NewDelhi	

Unit I - Chapter 3: 3.1, 3.1.1, 3.2, 3.2.1, 3.2.2, 3.3, 3.3.1, 3.4, 3.4.1, 3.4.3, 3.4.4.

Unit II - Chapter 4: 4.1, 4.2, 4.2.1, 4.7, 4.8, 4.9.

Unit III - Chapter 5: 5.1, 5.2, Chapter 6: 6.1, 6.2, 6.3, Chapter 8: 8.7, 8.8.

Unit IV- Chapter 9: 9.1, 9.2, 9.3, 9.7, 9.8, 9.9, 9.10, 9.13, 9.14.

Unit V - Chapter 11: 11.5, 11.9, 11.12, 11.13, 11.16, 11.17.

REFERENCE BOOK:

S.No	Title of the	Author	Publisher	Year of
<u> </u>	${f Book}$			Publication
1.	Introducing	S. S. Sastry	Prentice Hall	3rd Edition
	methods of		of India	2002
	Numerical		private	
	analysis		limited, New	
			Delhi	

Mapping with Programme Outcomes:

COs	PO ₁	PO ₂	PO ₃	PO4	PO5
CO1	S	M	M	S	M
CO ₂	M	M	S	S	M
CO ₃	S	S	S	\mathbf{M}	S
CO4	M	S	S	\mathbf{M}	\mathbf{M}
CO5	M	S	\mathbf{M}	S	S

Programme Code : UMA		B.S	c. Mathematics	
Course Code: M19UMA12		Core Course – X	II- OPERATION RES	EARCH - I
Batch Semester		Hours / Week	Total Hours	Credits
2019-2020	v	6	90	4

This course introduces fundamental concepts of Operation Research. It covers concepts linear Programming, Simplex Method, Duality in Linear Programming, Transportation Problem, Assignment problem, Inventory Control. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of the linear programming.
K2	CO2	Understand the Solution of the simplex method.
K4	CO3	Demonstrate understanding of the importance of the duality of
linear programming		linear programming
КЗ	CO4	Develop the idea about the Transportation problem.
K4	CO5	Understanding the concept of Assignment problem.

Unit I: Linear Programming:

Introduction-Origin and Development of O.R.-Nature and features of O.R.-Scientific Method in O.R-Modeling in O.R-Advantages and Limitations of Models –General solutions Methods for O.R models.-Methodology of O.R-linear Programming Problem-Mathematical Formulations of the Problem-graphical Solutions method- Canonical and standard Forms of LPP.

[Chap -1- 1.1-1.8, Chap - 2 - 2.2 - 2.3, Chap-3-3.2, 3.5.]

Unit II: Simplex Method:

Introduction-Fundamental Properties of Solutions - The Computational Procedure-Use of Artificial Variables-Degeneracy in Linear Programming-Solution of Simultaneous Linear Equations-Inverting Matrix Using Simplex Method-Applications of Simplex Method.

[Chap-4- 4.1-4.8]

Unit III: Duality in Linear Programming:

Introduction-General Primal-Dual Pair-Formulating a Dual Problem-Primal-Dual Pair in Matrix Form-Duality Theorems-Complementary Slackness Theorem-Duality and Simplex Method-Economic Interpretation of Duality-Dual Simplex Method.

[Chap-5.1-5.9]

Unit IV: Transportation Problem:

Introduction-LP Formulation of the Transportation Problem-Existence of Solution in T.P.-Duality in Transportation Problem-The Transportation Table-Loops in Transportation Tables-Triangular Basis in a T.P.-Solution of a Transportation Problem-Finding an Initial Basic Feasible Solution-Degeneracy in Transportation Problem-Transportation Algorithm (MODI Method.

[Chap-10 -10.1-10.9,10.12-10.13]

Unit V: Assignment Problem:

Introduction - Mathematical Formulation of the Problem-Solution Methods Assignment Problem-A Typical Assignment Problem-Dual of the assignment Method-The Travelling Salesman Problem.

[Chap -11 - 11.1-11.3,11.5-11.7]

TEXT BOOK:

S.No	Name of	Author	Publisher	Year of
	the Book			Publication
1.	Operations	KantiSwarup,	Sultan	2010
	Research	P.K.Guptaand	Chand &	
	15th Edition	Manmohan	Sons,	
			Chennai.	

REFERENCE BOOK:

S.No	Name of	Author	Publisher	Year of
	the Book			Publication
1.	Operations	S.Kalavathy	Vikas	2002
	Research,		Publishing	
	Second		House, New	
	Edition		Delhi	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	M	S	S	M
CO3	S	S	S	M	S
CO4	M	M	M	M	S
CO5	S	S	M	M	S

SKILL ENHANCEMENT COURSE - III

Programme Code : UMA		B.Sc. Mathematics		
Course Code: 19UMAS03		SEC-III - MATLAB		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2020	V	2	<mark>30</mark>	2

Course Objectives

This course introduces fundamental concepts of Matlab theory. It covers concepts Basics of Matlab, The MATLAB Environment, Files Input / Output, Passing Functions To M – Files , Errors, Round Off Errors and Truncation Errors. It provides technical skills to understand the concepts in Matlab.

Course Outcomes (CO)

K1	CO ₁	Acquiring knowledge of basic idea of the Basic Matlab.
K3	CO ₂	Understand the Matlab programming skills.
K2	CO3	Demonstrate understanding of the Matlab Commands and Various Page Styles.
КЗ	CO4	Develop the idea about the Passing Functions To M – Files
K4	CO5	Understanding the concept errors handling.

Unit I:

A simple Mathematical Model – Conservation laws in Engineering and Science – Numerical Methods Coverd in this Book. (Chapter I –Full)

Unit II:

The MATLAB Environment – Assignment – Mathematical operations – Use of Built - in Functions – Graphics – Other Resources – Case study – Exploratory Data Analysis.

(Chapter II – Full)

Unit III:

M – Files – Input – Output – Structured Programming – Nesting and Indentation. (Chapter III –section 3.1 - 3.4)

Unit IV:

Passing Functions To M – Files – Case Study :Bungee Jumper Velocity (Chapter 3 – Section 3.5 – 3.6)

Unit V:

Errors 80 – Round Off Errors – Truncation Errors – Total Numerical Error – Blunders – Model Errors – Data Uncertainty.
(Chapter IV – Full)

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year Of
				Publications
1.	Applied Numerical	Steven C.	TATA Mc	2007
	Methods with MATLAB for	Chapra	Graw –Hill	
	Engineers And Scientists		Publishing	
			company Ltd.	

REFERENCE BOOKS:

S.No	Name of the Book	Author	Publisher	Year Of
				Publications
1.	Technical Analysis and	Stanley	Prinded and	2007
	applications with Matlab		bounded in	
			<u>India</u>	
			by Barkha	
			Nath	
			Printers ,Delhi	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO ₁	M	M	S	\mathbf{M}	S
CO ₂	S	S	M	S	M
CO ₃	S	M	M	S	S
CO4	M	M	S	S	S
CO5	M	S	S	\mathbf{M}	M

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMA13		Core Course – XIII- ALGEBRAIC STRUCTURES -II			
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	VI	6	90	5	

This course introduces fundamental concepts of Algebraic structures. It covers concepts such as vector space, Quotient space, Inner product space, Linear transformation, matrices, trace, transpose and determinants. It provides technical skills to understand and study various concepts in algebra.

Course Outcomes (CO)

K1 CO1		Acquiring knowledge of vector space, Internal direct sum and
		External direct sum.
K2	CO2	Understand the Linear Independence & Quotient space.
K3	CO3	Demonstrate understanding of the importance of inner product
KS	CO3	space.
КЗ	CO4	Develop the idea about the linear transformation, matrices.
K4	CO5	Understanding the traces, transposes and determinants.

Unit I:

Vector Spaces – Definition – Simple properties – Examples – Homomorphism –Sub space – Quotient spaces – Internal direct sum – External direct sum.(Section 4.1).

Unit II:

Linear Independence – Dimension of a Vector space – Bases - Dimension of Quotient spaces (Section 4.2).

Unit III:

Inner product spaces – Definition – Examples – Applications – Orthogonal complement of a sub space – Orthonormal & Orthonormal Basis - Gram Schmidt Orthogonalization process (Section 4.4) .

Unit IV:

Linear Transformation – The Algebra of linear transformations - Characteristic roots – Matrices – Canonical forms – Triangular forms. (section 6.1 - 6.4)

Unit V:

Trace and Transpose – Definitions, Properties – Theorems –
Determinants – Definitions – Properties – Theorems – Cramer's Rule –
Problems.(Sections 6.8 and 6.9)

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Topics in Algebra- 2nd Edition	I.N.Herstein	John Wiely, NewYork	1975

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	A first course in modern algebra	A.R.Vasistha	Krishna PrakasanMan dhir, 9, Shivaji Road, Meerut (UP)	1983
2.	Modern Algebra	ViswanathaNaik	Emerald Publishers, 135, Anna Salai, Chennai	2001

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	M	S
CO2	S	S	M	M	S
CO3	S	S	M	S	S
CO4	M	S	M	S	S
CO5	S	M	M	S	S

Programme Code: UMA		B.Sc. Mathematics			
Course Code: M19UMA14		Core Course -XIV- REAL ANALYSIS - II			
Batch	Semester	Hours / Week Total Hours Cre			
2019-2020	VI VI	6 90			

This course introduces fundamental concepts of Real Analysis. It covers concepts such as connected, complete, compact, Riemann integral, Point wise convergence and uniform convergence of series of functions. It provides technical skills to understand and study various concepts in Real analysis.

Course Outcomes (CO)

K2	CO ₁	Basic concepts of connected sets and complete metric space.
K2	CO ₂	Understand the continuous functions in compact metric space and
KZ	COZ	uniform continuous.
K4	CO3	Existence of Riemann integral and properties of Riemann integral.
K3	CO4	Develop the idea about the Rolls theorem, Law of mean and
NS.	CO4	Improper integrals.
		Understanding the Point wise convergence of sequence of functions,
<mark>K4</mark>	CO5	uniform convergence of sequence of functions and uniform
		convergence of series of functions

Unit I:

More about open sets – Connected sets – Bounded sets - Totally bounded sets – Complete metric spaces. (Sections 6.1 to 6.4)

Unit II:

Compact metric spaces – Continuous functions on Compact Metric spaces – Continuity of the inverse functions – Uniform continuity . (Section 6.5 – 6.8).

Unit III:

Sets of measure zero - Definition of the Riemann integral – Existence of Riemann integrals – Properties of Riemann integrals – Derivatives (Section 7.1 to 7.5)

Unit IV:

Rolle's theorem – Law of Mean – Fundamental theorem of calculus – Improper integrals – Theorems on Improper integrals (Section 7.6 to 7.10).

<mark>Unit V:</mark>

Point wise convergence of sequence of functions – uniform convergence of sequence of functions – consequences of uniform convergences – convergence and uniform convergence of series of functions (Section 9.1 to 9.4)

TEXT BOOK:

S.No.	Title of the	Author	Publisher	Year of
	<mark>Book</mark>			Publication
1.	Methods of	Richard R.	<mark>IBM</mark>	1970
	Real	Goldberg.	Publishing	
	<mark>Analysis.</mark>		<mark>New Delhi.</mark>	

REFERENCE BOOKS:

S.No.	Title of the	Author	Publisher	Year of
	<mark>Book</mark>			Publication
1.	A First course	Sterling K	Springer (India)	2004
	<mark>in Real</mark>	Barberian.	Private Limited,	
	<mark>Analysis.</mark>		New Delhi.	
<mark>2.</mark>	Mathematical	Tom M.	<mark>Narosa</mark>	2002
	<mark>Analysis</mark>	<mark>Apostal</mark>	Publications,	
			<mark>NewDelhi</mark>	
<mark>3.</mark>	<mark>Real Analysis</mark>	M.S.Rangach	New Century	<mark>1996</mark>
		<mark>ari</mark>	Book House,	
			Chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO ₂	PO3	PO4	PO5
CO1	M	M	M	S	M
CO ₂	S	S	S	S	S
CO ₃	S	M	M	S	M
CO4	S	M	M	M	S
CO5	M	S	M	S	S

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMA15		Core Course - XV- COMPLEX ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	6 90		4

This course introduces fundamental concepts of complex analysis. It covers concepts such as Complex Numbers and Analytical Functions, Bilinear Transformations and Mapping By Elementary Functions, Power Series and Series Expansions, Complex Integration and Calculus Of Residues. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes (CO)

K1 CO1		Acquiring knowledge of Complex Numbers And Analytical
		Functions.
K2	CO2	Understand Bilinear Transformations And Mapping By Elementary
K2 CO2		Functions.
K4	CO3 Demonstrate understanding of the Power Series And Series	
IX+	CO3	Expansions.
K4	CO4	Develop the idea about the Complex Integration.
КЗ	CO5	Understanding the applications Calculus of Residues.

UNIT I: COMPLEX NUMBERS AND ANALYTICAL FUNCTIONS:

Introduction – Functions of a complex variable – Limits – Theorems on limit – Continuous functions – Differentiability – The Cauchy Riemann equations – Analytic functions – Harmonic functions – Conformal mapping. Chapter 2: Sec: 2.0-2.9.

UNIT II: BILINEAR TRANSFORMATIONS AND MAPPING BY ELEMENTARY FUNCTIONS:

Introduction – Elementary transformations – Bilinear transformations – Cross ratio – Fixed points of bilinear transformations – Some special bilinear transformations – Mapping by elementary functions. Chapter 3: Sec: 3.0-3.5 & Chapter 5: Sec: 5.0-5.7.

UNIT III: POWER SERIES AND SERIES EXPANSIONS:

Introduction – Sequence & Series – Sequences and series of functions – Power series – Elementary functions – Taylor's series – Laurent's series – Zeros of an analytic function – Singularities.

Chapter 4: Sec: 4.0-4.4 & Chapter 7: Sec: 7.0-7.4.

UNIT IV: COMPLEX INTEGRATION:

Introduction – Difinite integral – Cauchy's theorem – Cauchy's integral formula – Higher derivatives. Chapter 6: Sec: 6.0-6.4.

UNIT V: CALCULUS OF RESIDUES:

Introduction – Residues – Cauchy's Residue theorem – Evaluation of definite integrals – Contour integral. Chapter 8: Sec: 8.0-8.3.

TEXT BOOK:

S.No.	Title of the	Author	Publisher	Year of
	Book			Publication
1.	Complex	S.Arumugam,	Scitech	2002
	Analysis	A.Thangapandi	publications(I)	
		Issac &	Pvt. Ltd. T.Nagar,	
		A.Somasundaram	Chennai-600017.	

REFERENCE BOOK:

S.No.	Title of the Book	Author	Publisher	Year of Publication
1.	Complex Analysis	T. K . Manica vachagampillai, S.P.Rajagopalan, R Sattanathan	S.Viswanath an (Printers and publishers) Pvt Ltd, Chennai - 600031.	2009

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	S
CO2	M	S	S	M	S
CO3	S	S	S	S	S
CO4	M	M	S	M	S
CO5	S	M	S	S	S

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMA16		Core Course –XVI- Operation Research –II		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	5 75 4		

This course introduces fundamental concepts of Operation Research. It covers Non-Linear Programming, Sequencing Problem, Dynamic Programming, Replacement Problem and System Reliability, Queuing Theory, Network Routing Problems and Network Scheduling By PERT / CPM. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of the Non-Linear Programming.		
K2	CO2	Understand the Solution of Sequencing Problem.		
K4	CO3	Demonstrate understanding of the importance of the Inventory		
N+	CO3	Control.		
КЗ	CO4	Develop the idea about the Queuing Theory.		
K4	CO5	Understanding the concept of Network Routing Problems and		
K4 CO3		Network Scheduling By PERT / CPM		

Unit I: NON-LINEAR PROGRAMMING:

Introduction - Formulating Non-Linear Programming Problem (NLPP) - General Non-Linear Programming Problem-Constrained Optimization with equality Constraints - Constrained Optimization with Inequality Constraints - Saddle Point Problems-Saddle Points and NLPP - Games and strategies - Introduction - Two-Person Zero - Sum Games - Some Basic Terms - The Maximum - Minimax Principle - Games Without Saddle Points - Mixed Strategies- Graphic Solution of $2\times n$ and $m\times 2$ Games- Dominance Property - Arithmetic Method for $n\times n$ Games- General Solution of $m\times n$ Rectangular Games - Game against Passivity .

[Chap-27-27.1-27.7 and chap-17-17.1-17.10]

Unit II: SEQUENCING PROBLEM:

Introduction- Problem of Sequencing - Basic Terms Used in Sequencing - Processing n Jobs through Two Machines - Processing n Jobs through k Machines - Processing 2 Jobs through k Machines - Maintenance Crew Scheduling - Problems of Complex Scheduling .

[Chap-12-12.1-12.6]

Unit III: INVENTORY CONTROL:

Introduction - Types of Inventories-Reasons for Carrying Inventories - The Inventory Decisions-Objectives of Scientific Inventory Control - Cost associated with inventory control-An Inventory Control Problem - The Concept of EOQ - Deterministic Inventory Problems with No Shortages - Deterministic Inventory Problem with Shortages - Problems of EOQ with Price Breaks. [Chap-19- 19.1-19.12]

Unit IV: QUEUEING THEORY:

Introduction - Queueing System - Elements of a Queueing System - Operating Characteristics of a Queueing System - Deterministic Queueing System - Probability Distribution in Queuing System - Classification of Queueing Models - Definition of Transient and Steady States- Poisson Queueing System - Non-Poisson Queueing System - Cost Models in Queueing.[Chap-21-21.1-21.11]

Unit - V

NETWORK ROUTING PROBLEMS:

Introduction-Network Flow Problems-Minimal Spanning Tree Problem-Shortest Route Problems-More Applications of Shortest Route Problems-Maximal Flow Problems-Minimum Cost Flow Problems.

NETWORK SCHEDULING BY PERT - CPM:

Introduction-Network: Basic Components-Logical Sequencing-Rules of Network Construction-Concurrent Activities-Critical Path Analysis-Probability Considerations in PERT - Distinction between PERT and CPM-Applications of Network Techniques.

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year of Publication
1.	Operations Research 15th Edition	KantiSwarup, P.K.Gupta and Manmohan	Sultan Chand & Sons, Chennai.	2010

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Operations Research, Second Edition	S.Kalavathy	Vikas Publishing House, New Delhi	2002
2.	Operations Research, Second Edition	P.K.Gupta and D.S.Hira	S.Chand& Co, NewDelhi	2004
3.	Operations Research	HamdyTaha	Prentice Hall Publications, NewDelhi	1996
4.	Operations Research	Nita Hshah Ravi M. GorHardiksoni	PHI, P,Ltd,	2010

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	M	S	S	M
CO3	S	S	S	M	S
CO4	M	M	M	M	S
CO5	S	S	M	M	S

SKILL ENHANCEMENT COURSE - IV

Programme Code : UMA		B.Sc. Mathematics		
Course Code: 19UMAS04		SEC-IV- QUANTITATIVE APTITUDI		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	2 30		2

Course Objectives

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such Time & Work, Pipes & Cistern, Time & Distance, Problem on Trains, Simple Interest, Compound Interest, Area, Volume & Surface Areas, Permutations & Combinations Probability. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO ₁	Identify the logic behind Time & Work
		Pipes & Cistern.
K2	CO ₂	Understand the concepts of Time & Distance and Problem on Trains
K2	CO ₃	Analyze the problems on Simple Interest
		And Compound Interest
K2	CO4	Develop the Area
		Volume & Surface Areas.
K3	CO5	Apply the concepts to solve a problem for Permutations &
		Combinations
		Probability.

Unit I:

Time & Work – Pipes & Cistern. (Section-I: 15 and 16)

Unit II:

Time & Distance – Problems on Train. (Section-I: 17 and 18)

Unit III:

Simple Interest – Compound Interest. (Section-I: 21 and 22)

Unit IV:

Area – Volume & Surface Areas. (Section-I: 24 and 25)

Unit V:

Permutations & Combinations – Probability. (Section-I: 30 and 31)

Text Book:

S.No	Name of the Book	Author	Publisher	Year Of Publications
1.	Quantitative Aptitude for	R.S.AggarWal	S.Chand Co Ltd,152,	2001
	competitive Examinations		Annasalai, Chennai.	

Mapping with Programme Outcomes:

COs	PO ₁	PO2	PO3	PO4	PO5
CO ₁	M	M	M	M	M
CO ₂	S	M	M	M	S
CO ₃	M	S	M	S	S
CO4	S	M	S	M	S
CO ₅	S	M	S	M	S

ELECTIVE COURSE - I

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMAE01		Elective - I- DISCRETE MATHEMATICS			
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	v	5	75	4	

Course Objectives

This course introduces fundamental concepts of discrete mathematics. It covers concepts such as Mathematical Logic, Normal Forms, Statement Calculus, Relations, Functions, Algebraic systems, homomorphism of semi groups & monoids, Lattices as Algebraic systems and Boolean Functions . It provides technical skills to understand and study various concepts in abstract algebra.

Course Outcomes (CO)

K1 CO1		Acquiring knowledge of Mathematical Logic and Statement
		Formulas and Truth Table.
K2	CO2	Understand Normal Forms , Statement Calculus.
КЗ	CO3	Demonstrate understanding of the Relations and Functions.
K4 CO4 Develop the idea about the Algebraic sys		Develop the idea about the Algebraic systems, homomorphism of
IX+	CO4	semi groups & monoids
К3	CO5	Understanding the applications of Lattices as Algebraic systems and
IXO		Boolean Functions

Unit I:

Mathematical Logic – Statements and Notations – Connectives – Negation -conjunction – Disjunction-Statement Formulas and Truth Table – Conditional and Biconditional – Well formed Formulas – Tautologies. (sections 1.1, 1.2.1 – 1.2.4, 1.2.6 –1.2.8).

Unit II:

Normal Forms – Disjunctive Normal Forms – Conjunctive Normal Forms – Principal Disjunctive Normal Forms – Principal Conjunctive Normal Forms – Ordering and Uniqueness of Normal Forms – The Theory of Inference for the Statement Calculus – Validity using Truth tables – Rules of Inference – Consistency of premises and indirect method of proof . (sections 1.3.1 - 1.3.5, 1.4.1 - 1.4.3).

Relations & Ordering – Relations – Properties of binary relation in a set -Functions – Definition & Introduction – Composition of Functions – Inverse function –Binary and n - array operations – Hashing Functions – Natural numbers – Peano Axioms & Mathematical Induction – Cardinality.

Unit IV:

Algebraic systems – Definition & Examples – Semi groups and monoids –definition and examples – homomorphism of semi groups & monoids – sub semi groups & sub monoids – Grammars – Formal Definition of a Language – Notions of Syntax Analysis.

(Sections 3.1.1, 3.1.2, 3.2.1, 3.2.2, 3.2.3, 3.3, 3.3.2, 3.3.3).

Unit V:

Lattices as partially ordered Sets: Definition and Examples – some properties of Lattices – Lattices as Algebraic systems – sub Lattices – Direct product and homomorphism. Boolean Algebra: Definition and Examples – subalgebra , Direct product and homomorphism – Boolean Functions – Boolean Forms and Free Boolean Algebras - Values of Boolean Expression and Boolean Functions

(sections 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2).

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Discrete mathematical structures with applications to computer science	J.P.Trembly, R.Manohar	Tata McGraw Hill, NewDelhi	2001

REFERENCE BOOKS:-

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Discrete	Prof.V.Sundaresan,	Tata	2000
	Mathematics	K.S.GanapathySubr	McGraw	
		amaniyan,	Hill, New	
		K.Ganesan	Delhi	
2.	Discrete	L.Lovarz, J.Pelikan,	Springer	2002
	Mathematics	K.Vexztergombi	Internationa	
			l Edition	
3.	Discrete	N. Chandrasekaran	PHI	2010
	Mathematics	M. Uma parvathi	Learning P.	
			Ltd.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	M
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	M	S	M	S
CO5	S	M	S	M	S

ELECTIVE COURSE - I

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M19UMAE02		Elective – I- ELEMENTARY NUMBER THEORY			
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	v	5	75	4	

Course Objectives

This course introduces fundamental concepts of Number theory. It covers concepts such as Divisibility of integers-Division, Euclidean algorithm, Prime and Composite numbers, Divisors of an integer-Arithmetic functions, Perfect numbers, Euler function, Congruence's, linear congruence, Fermat's theorem, Wilson's theorem, Lagrange's theorem. It provides technical skills to understand and study various concepts in number theory analysis.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of the Divisibility of integers-Division and
KI COI		Euclidean algorithm.
K2	CO2	Understand Prime and Composite numbers and Divisors of an
KZ	CO2	integer-Arithmetic functions
К3	CO3	Demonstrate understanding of the Perfect numbers and Euler
KS COS		function.
КЗ	CO4	Develop the idea about the Congruence's and linear congruence.
КЗ	CO5	Understanding the applications of Fermat's theorem, Wilson's
N2	CO3	theorem, Lagrange's theorem.

Unit I:

Absolute value - Divisibility of integers - Division algorithms -Greatest common divisor - Euclidean algorithm - Least common multiple.

Unit II:

Prime and Composite numbers - The sieve of Eratosthenes-Euclid's theorem - Unique factorization theorem - Positional representation of an integer - Divisors of an integer - Arithmetic functions - Product of divisors.

Perfect numbers - Euclid's theorem - Abundant, deficient and amicable numbers-Triangular number - Euler function-Greatest integer functions.

Unit IV:

Congruences – Residues - Residue classes - complete residue system-Reduced residue system - Magic number - Divisibility tests - Linear congruence – Chinese Remainder Theorem.

Unit V:

Introduction-Fermat's theorem-Euler's Extension of Fermat's theorem-Wilson's theorem-Lagrange's theorem.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Elements of Number theory	S. Kumaravelu and Susheela		2002
		Kumaravelu		

Unit I - Chapter 2 Section 53 - 57

Chapter 3 Section 61 - 76

Unit II - Chapter 4 Section 77 - 97

Unit III - Chapter 4 Section 98 - 113

Unit IV - Chapter 6 Section 155 - 188 & 199 - 201

Unit V - Chapter 7 Section 191 - 211

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Elements of Number theory	David M.Burton	Tata Mc- Graw Hill publication	2010
2.	An Introduction to Theory of Numbers	Ivan Niven and H. Zuckerman	John wiley and sons	2008

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	M	M
CO2	S	M	S	M	S
CO3	S	M	S	S	M
CO4	M	M	S	M	S
CO5	S	M	S	M	S

ELECTIVE COURSE - I

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAE03		Elective-I- Astronomy		
Batch	Batch Semester		Total Hours	Credits
2019-2020	v	5	75	4

Course Objectives

This course introduces fundamental concepts of Astronomy. It covers concepts such as Standard formulae in Spherical Trigonometry , Diurnal motion Astronomical Refraction , Geocentric parallax , Kepler's laws of planetary motion , Fixing the position of the First point of Aries , Eclipses , General description of solar system and Stellar universe, . It provides technical skills to understand and study various concepts in space analysis.

Course Outcomes (CO)

K1	CO1	Introducing the exciting world of astronomy to the students.
K2	CO2	Helping the students to study about the celestial objects.
КЗ	CO3	Understanding the effects of refractions geocentric parallax.
K2	CO4	Compiling solar and lunar ellipses.
KZ		Understanding Kepler's laws of planetary motion
K4	CO5	Understanding the variation in duration of day and night in various
174	005	zones of earth.

Unit I:

Standard formulae in Spherical Trigonometry – Statements only – Celestial sphere – Celestial co-ordinates and their conversions – Diurnal motion - Problems connected with Diurnal Motion - Zones of Earth - Dip – Twilight – Problems.

Unit II:

Astronomical Refraction – Tangent and Cassini's formulae – Geocentric parallax – Heliocentric parallax – problems.

Kepler's laws of planetary motion – Newton's deductions from Kepler's Laws -Equation of Time – Seasons – Calender – Conversion of time – problems.

Unit IV:

Fixing the Ecliptic – Fixing the position of the First point of Aries (Flamsteed's method) - The Moon – Different phases - Metonic cycle – Tides – problems .

Unit V:

Eclipses – solar eclipses – Lunar eclipses – General description of solar system and Stellar universe – problems.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Astronomy	Kumaravelu and Susila Kumaravelu	S.Kumaravelu, MurugaBhavanam, Chidambara Nagar, Nagarkoil-2.	1984

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	M
CO2	S	M	S	M	S
CO3	S	S	S	S	M
CO4	M	M	S	M	S
CO5	S	M	S	M	S

ELECTIVE COURSE - II

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAE04		Elective – II- Graph Theory		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2020	VI	5	75	4

Course Objectives

This course introduces fundamental concepts of Graph theory . It covers as Graphs, Sub grapgs, Operatrions on graphs, paths, connection, blocks, Eulerian, Hamiltonian, Trees and directed graphs. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea graphs and sub graphs.
K2	CO2	Understand the Paths, connections.
К3	CO3	Demonstrate understanding of the importance of the cut point, cut
edge ar		edge and blocks.
КЗ	CO4	Develop the idea about the trees and centre of tree.
K4	CO5	Understanding the concept of directed graphs and its characterization.

Unit I:

Introduction – Definition and Examples – Degrees – Sub graphs – Operations on Graphs – Problems.

(Chap - II : Sec - 2.0 - 2.3 & 2.9)

Unit II:

 $Introduction - Walks \ , \ Trails \ and \ Paths - Connectedness \ and \\ components - Blocks - Connectivity.$

(Chap - IV : Sec - 4.0 - 4.4)

Introduction – Eulerian Graphs – Hamiltonian Graphs.

(Chap - V : Sec - 5.0 - 5.2)

Unit IV:

Introduction – Characterization of Trees – Center of a Tree.

(Chap - VI : Sec - 6.0 - 6.2)

Unit V:

Introduction – Definition and Basic Properties – Paths and connections – Digraphs and Matrices.

(Chap - X : Sec - 10.0 - 10.3)

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Invitation to Graph	S.Arumugam,	Scitech	2001
	-	S.Ramachandran	Publications,	
	Theory		Chennai	

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Basics of Graph Theory	K.R.Parthasarathy	TMH Publishing company	2001
2.	Graph theory	S.Kumaravelu and Suseela kumaravelu	SKV Printers	1996
3.	A first course in Graph theory	A.Chandran	Macmillan Publishers, Chennai	1997

Mapping with Programme Outcomes:

cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	S	S
CO2	M	M	S	S	M
CO3	S	S	S	M	S
CO4	M	S	M	M	S
CO5	S	S	M	M	S

ELECTIVE COURSE - II

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAE05		Elective - II- MATHEMATICAL MODELLING		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2020 VI		5	75	4

Course Objectives

This course introduces fundamental concepts of Mathematical modeling. It covers Linear growth model, Non-linear growth and decay models, Modeling in population dynamics, Modeling of epidemics, Modeling in second order O.D. E, Elliptic motion of a satellites, Modeling through difference equations, Harrod model, Modeling through graphs, Communication network and Detection of clique. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes (CO)

	K1	CO1	Acquiring knowledge of basic idea of the Linear growth model, Non-
			linear growth and decay models.
	K2 CO2		Understand the Modeling in population dynamics and Modeling of
	K2	CO2	epidemics.
	K2	CO3	Demonstrate understanding of the importance of the Modeling in
	KΔ	CO3	second order O.D.E, Elliptic motion of a satellites.
	IZO.	004	Develop the idea about the Modeling through difference equations,
	K3 CO4		Harrod model.
r	1/2	COF	Understanding the concept of Modeling through graphs,
	КЗ	CO5	Communication network and Detection of clique.

Unit I:

Ordinary differential equation – Linear growth model – Growth of science and scientists – Non-linear growth and decay models – Diffusion of glucose or a medicine in the bloodstream.

Unit II:

Modeling in population dynamics – Prey-predator models – Competition models – Multi-species models – Modeling of epidemics – Simple epidemic models – A model for diabetic-mellitus.

Modeling in second order O.D.E. – Modeling of planetary motion – Motion under central force – Circular motion – Elliptic motion of a satellites – Rectilinear motion.

Unit IV:

Modeling through difference equations – Linear difference equation – Obtaining complementary function by use of matrices – Harrod model – cobweb model – Applications of Actuarial science.

Unit V:

Modeling through graphs – seven bridge problem – representing results of tournament – Genetic graph – Food web – Communication network – Matrices associated with a directed graph – Detection of clique – Terms of signed graph.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Mathematical Modeling	J. N. Kapur	Wiley Eastern Limited, New Age International Pvt. Ltd	2013

Unit I Chapter 2: 2.1 – 2.3, 2.4.2

Unit II Chapter 3: 3.1.1 – 3.1.3, 3.2.1 & 3.5.1

Unit III Chapter 4: 4.1.1 – 4.3.1

Unit IV Chapter 5: 5.2.1 – 5.2.6, 5.3.1, 5.3.2 & 5.3.4

Unit V Chapter 7: 7.1.2 – 7.3.1

REFERENCE BOOK:

S.No	Title of the	Author	Publisher	Year of
	Book			Publication
1.	Mathematical	J. N. Kapur	Wiley Eastern Limited,	1985
	Models in		New Age International	
	Biology and		Pvt. Ltd.,	
	Medicine			

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	S	S
CO2	M	M	S	S	M
CO3	S	S	S	M	S
CO4	M	S	M	M	S
CO5	S	S	M	M	S

ELECTIVE COURSE - II

Programme Code : UMA		B.Sc. Mathematics				
Course Code: M19UMAE06		Elective-II-Probability Theory				
Batch	Semester	Hours / Week Total Hours		Credits		
2019-2020	VI	5 75		4		

Course Objectives

This course introduces fundamental concepts of Statistics . It covers such as probability Axioms, conditional probability , probability distribution of a random variable, Discrete and continuous variables, Functions of a random variable, Moment generating functions, Binomial distribution, Poisson distribution, Gamma distribution, Normal distribution, Regression model Two way analysis of variance. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of probability Axioms, conditional
KI COI		probability.
K2	K2 CO2 Understand the probability distribution of a random variable,	
KZ	CO2	Discrete and continuous variables.
K2 CO3 Demonstrate understanding of the importance of the Function		Demonstrate understanding of the importance of the Functions of a
K2 CO3		random variable, Moment generating functions.
КЗ	CO4	Develop the idea about the Binomial distribution, Poisson
N.S	CO4	distribution, Gamma distribution, Normal distribution.
КЗ	CO5	Understanding the concept of Regression model Two way analysis
LS.	CO3	of variance.

Unit I:

Introduction – probability Axioms – conditional probability – Baye's theorem – independent events – problems.

Unit II:

Random variable – probability distribution of a random variable – Discrete and continuous variables – problems.

Expected value – Functions of a random variable – Moment generating functions – problems.

Unit V:

Two point distribution – Binomial distribution – Poisson distribution – Gamma distribution – Normal distribution – Chebychev's inequality – problems.

Unit V:

Regression model – one way analysis of variance – Two way analysis of variance – problems.

TEXT BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	An Introduction to Probability Theory	V.K.Rokatgi	Wiley Eastern	1985
	and Mathematical		Publication,	
	Statistics		NewDelhi	

REFERENCE BOOK:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Probability theory	Marek -	John Wiley	1956
	and Mathematical	Fisher	and sons,	
	Statistics		NewYork	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	S
CO2	S	S	M	M	S
CO3	M	S	S	M	S
CO4	M	S	M	M	S
CO5	S	S	M	S	S

Programme Code	e : UMA	B.Sc. Mathematics			
Course Code: M19UMAA01		Allied Course – I Algebra, Integral Calculus and Fourier Series			
Batch Semester 2019-2020 I		Hours / Week 5	Total Hours 75	Credits 4	

Course Objectives

This course introduces fundamental concepts of Basic Mathematics. It covers such as matrix, Eigen Values and Eigen Vectors, Cayley Hamilton theorem, Polynomial equations, Imaginary and irrational roots, Descarte's rule of signs, Radius of curvature in Cartesian and polar co-ordinates, Integral Calculus, Integration by Parts, Fourier Series, Half range series. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of matrix, Eigen Values and Eigen
IXI	COI	Vectors, Cayley Hamilton theorem.
K2	CO2	Understand the theory of equations and its properties.
K2	CO3	Demonstrate understanding of the importance of the radius of
K2 CO3		curvature.
IZO.	CO1	Develop the idea about the solution of Integral Calculus,
K2 CO4		Integration by Parts.
К3	CO5	Understanding the concept of Fourier Series, Half range series.

Unit I:

Definition of Matrix – Addition ,Subtraction , Multiplication of Matrices . Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix. Characteristic Equation – Eigen Values and Eigen Vectors – Cayley Hamilton Theorem (Statement only)

Unit II:

Polynomial Equations – Imaginary and Irrational roots – Transformation of Equation – Descarte's rule of signs – Problems.

Radius of Curvature in Cartesian and polar coordinates – Pedal Equation of a curve – Radius of curvature in Polar Coordinates.

Unit IV:

Integral Calculus – Integration by Parts – Definite integrals and its properties – Reduction formula for $\int \cos^n x dx$, $\int_0^{\frac{\pi}{2}} \sin^n x dx$, $\int_0^{\frac{\pi}{2}} \cos^n x dx$, $\int x^n e^{ax} dx$, $\int_0^{\infty} e^{-x} x^n dx$ Problems.

Unit V:

Fourier Series – Definition – To find the Fourier coefficients of periodic functions of period 2Π – even and odd functions – Half range series – problems.

TEXT BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Algebra Volume-I	T.K.Manicka vasagamPillai and S.Narayanan.	Vijay Nicole Imprints Pvt Ltd, # C-7 Nelson Chmbers. 115,NelsonManicka m Road, Chennai – 600029.	2004
2.	Algebra Calculus and Trigonometry	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai - 600017.	2000

REFERENCE BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Calculus	N.P. Bali	Krishna	1994
			PrakasanMandhir, 9,	
			Shivaji Road, Meerut	
			(UP).	
2.	Calculus	D. Sudha	Emerald Publishers,	1988
			135, Anna Salai,	
			Chennai – 600002.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	S	S	M	S
CO3	M	S	S	M	M
CO4	M	S	S	M	S
CO5	S	S	S	M	S

Programme Code : UMA		B.Sc. Mathematics		
Course Code. M190MAA02		Allied Course –II -Di Transforms	fferential Equations	and Laplace
Batch	Semester	Hours / Week Total Hours Credits		
2019-2020	I	5 75 4		

Course Objectives

This course introduces fundamental concepts of Basic Mathematics. It covers such as Second order differential equation with constant coefficient, Formation of partial differential equation by eliminating arbitrary constants and arbitrary functions, Solutions of standard types of partial differential equations, Laplace transforms, Inverse Laplace transforms . It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of Second order differential		
17.1	001	equation with constant coefficient and its problems.		
K2	CO2	Understand the Formation of partial differential equation by		
K2 CO2		eliminating arbitrary constants and arbitrary functions.		
VO.	CO3	Demonstrate understanding of the importance of the Solutions of		
K2 CO3		standard types of partial differential equations		
1/0	004	Develop the idea about the solution of the Laplace transforms and		
K2 CO4		its problems.		
1/2	005	Understanding the concept of the inverse Laplace transforms and		
K3 CO5		its problems.		

Unit I:

Second order differential equation with constant coefficient - particular integral of the type e^{ax} , cosax or sinax, x^n , $e^{ax}V$ where V is any function of cosax or sinax or x or x^2 .

Unit II:

Formation of partial differential equation by eliminating arbitrary constants and arbitrary functions – problems – definitions – complete, particular, singular and general integrals.

Solutions of standard types of partial differential equations – clairauts's form.

Unit IV:

Laplace transforms – definitions – Standard formula – Elementary theorems – problems.

Unit V:

Inverse Laplace transforms – Standard formula – Elementary theorems – problems.

TEXT BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Differential Equations and Laplace Transforms	Dr.P.R.Vittal	Margham Publications, Chennai -600017.	2002
2.	Allied Mathematics	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai -600017.	2002
3.	Allied Mathematics	A.Singaravelu	Meenakshi Publishers,120,Pushpa Nagar, Medavakkam, Chennai – 601302.	2002

REFERENCE BOOKS:

S.No	Title of the	Author	Publisher	Year of
	Book			Publication
1.	Engineering	Gunavathi &	Emerald Publishers,	1984
	Mathematics	Thilkavathy	135,AnnaSalai,	
			Chennai – 600002.	
2.	Calculus	N.P.Bali.	Krishna Prakasam	1994
			Mandir,9,Shivaji Road,	
			Meerut(UP).	

Mapping with Programme Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	S	S	M	S
CO3	M	S	S	M	M
CO4	M	S	S	M	S
CO5	S	S	S	M	S

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAAP01		Allied Practical – I - Mathematics		
Batch	Semester	Hours / Week Total Hours Cred		
2019-2020	11	2 60 2		2

Course Objectives

This course introduces fundamental concepts of Basic Mathematics. It covers such as Characteristic equation, Cayley Hamilton theorem, nth derivative, Leibnitz formula for nth derivative, Partial differentiation, Homogeneous functions, Scalar point function Divergence, curl of a vector point function Solenoidal and irrotational vectors. Application of Laplace transforms to solve second order differential equations with constant coefficients. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of Characteristic equation, Cayley			
		Hamilton theorem and its problems.			
K2	CO2	Understand the Formation of nth derivative, Leibnitz formula for nth			
KZ	CO2	derivative.			
		Demonstrate understanding of the importance of the Solutions			
K2	CO3	Partial differentiation, Homogeneous functions.			
		Develop the idea about the solution of the Scalar point function			
K2	CO4	Divergence, curl of a vector point function, Solenoidal and			
		irrotational vectors.			
		Understanding the concept of the Application of Laplace			
КЗ	CO5	transforms to solve second order differential equations with			
		constant coefficients.			

Unit I:

Characteristic equation – Cayley Hamilton theorem – Problems

Unit II:

nthderivative – Leibnitz formula for nth derivative – problems

Partial differentiation – Partial derivatives of higher order – Homogeneous functions – Problems.

Unit IV:

Scalar point function – gradient of scalar point functions – vector point functions – Divergence, curl of a vector point function – Solenoidal and irrotational vectors.

Unit V:

Application of Laplace transforms to solve second order differential equations with constant coefficients

TEXT BOOKS:

S.No	Title of the Book	Author	Publisher	Year of Publication
1.	Allied Mathematics	T.K.Manicka vasagamPillai and S.Narayanan.	S.Viswanathan and Co., Chennai	1992
2.	Allied Mathematics	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad, T.Nager, Chennai - 600017.	2002
3.	Allied Mathematics	A.Singaravelu	Meenakshi Traders, Chennai	2002

Mapping with Programme Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	S	S	M	S
CO3	M	M	M	M	M
CO4	M	S	S	M	S
CO5	S	S	S	M	S

NON MAJOR ELECTIVE COURSE - I

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19NMA01		NMEC-I - Mathematics For Competitive Examination		xamination - I
Batch	Semester	Hours / Week Total Hours Cr		
2019-2020	III	2	30	2

Course Objectives

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such HCF, LCM, Square Root, average, numbers, profit, loss, percentage, proposition & partnership. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO1	Identify the logic behind numbers and fractions
K2	CO2	Understand the concepts of Square root, cube root and average.
K2	CO3	Analyze the problems on numbers and problems on ages.
K2	CO4	Develop the problems on indices, percentage, Profit And Loss.
К3	CO5	Apply the concepts to solve a problem for Ratio and Proportion, Partnership.

Unit I:

H.C.F. and L.C.M of Numbers. (Section-I: 2)

Unit II:

Square Roots and Cube Roots. (Section-I: 5)

Unit III:

Problems on Numbers. (Section-I: 7)

Unit IV:

Percentages. (Section-I: 10)

Unit V:

Profit and Loss. (Section-I: 11)

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year Of Publication.
1.	Quantitative Aptitude For	R.S.Aggarwal	S.Chand &	2001
	Competitive Examinations		Co Ltd,152,	
			Annasalai,	
			Chennai.	

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	M	M	M	S
CO3	M	S	M	S	S
CO4	S	M	S	M	S
CO5	S	M	S	M	S

NON MAJOR ELECTIVE COURSE - I

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19NMA02		NMEC - I - MATRIX ALGEBRA		
Batch	Semester	Hours / Week Total Hours C		Credits
2019-2020	III	2	30	2

Course Objectives

This course introduces fundamental concepts of Basic Mathematics. It covers such as Matrix, Addition, Subtraction, Multiplication, Transpose of a Matrix, adjoint of a Matrix, Inverse of the Matrix, Symmetric, Skew symmetric, Hermitian and Skew Hermitian Matrix, Rank of The Matrix, Cayley Hamilton Theorem. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes (CO)

K1	CO1	Acquiring knowledge of basic idea of Matrix, Addition, Subtraction,
Kı	COI	Multiplication,
K2	CO2	Understand the Transpose of a Matrix, Adjoint of a Matrix, Inverse
KZ	CO2	of the Matrix.
K2	CO3	Demonstrate understanding of the importance of the Symmetric,
KZ	CO3	Skew symmetric, Hermitian and Skew Hermitian Matrix.
K2	CO4	Develop the idea about the Rank of The Matrix.
КЗ	CO5	Understanding the concept Cayley Hamilton Theorem and its
KO	CO3	problem.

Unit I:

Definition of Matrix – Addition, Subtraction, Multiplication of Matrices.

Unit II:

Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix.

Symmetric, Skew symmetric, Hermitian and Skew Hermitian Matrix – Problems.

Unit IV:

Rank of The Matrix – Definition – Finding Rank of the Matrix – Problems up to 3x3 Matrix.

Unit V:

Cayley Hamilton Theorem (statement only) – Problems only.

TEXT BOOK:

S.No	Name of The Book	Author	Publisher	Year of Publications
1.	Allied Mathematics	Dr.P.R.Vittal	Margham Publications, Chennai -17	2000

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	S	M	M	S
CO3	M	S	S	M	M
CO4	M	S	M	M	S
CO5	S	M	M	S	M

NON MAJOR ELECTIVE COURSE - II

Programme Cod	e : UMA	B.Sc. Mathematics		
Course Code: M19NMA03 NMEC - II - Mathematics For Competer Examination - II			atics For Competitiv	e
Batch 2019-2020	Semester IV	Hours / Week Total Hours Credits 2 30 2		

Course Objectives

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such as Partnership, Simple interest, Compound interest, Area and Odd man out &series. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO1	Identify the logic behind Partnership and its problem.
K2	CO2	Understand the concepts of Simple interest and its problem.
K2	CO3	Analyze the problems on Compound interest and its problem.
K2	CO4	Develop the problems on Area and its problem
КЗ	CO5	Apply the concepts to solve a problem for Odd man out &series.

Unit I:

Partnership (Section-I: 13)

Unit II:

Simple interest (Section-I: 21)

Unit III:

Compound interest (Section-I: 22)

Unit IV:

Area. (Section-I: 24)

Unit V:

Odd man out & series (Section-I: 35)

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year Of Publications
1.	Quantitative Aptitude for competitive Examinations	R.S.AggarWal	S.Chand & Co Ltd,152, Annasalai, Chennai.	2001

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	M	M	M	S
CO3	M	S	M	S	M
CO4	S	M	S	M	M
CO5	S	M	S	M	S

NON MAJOR ELECTIVE COURSE - II

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19NMA04		NMEC - II - Applied I	Numerical Methods	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	2	30	2

Course Objectives

This course introduces fundamental concepts such as Numerical methods. It covers concepts such as Solution of algebraic and Transcendental equations , Bisection Method, Newton – Raphson Method, Finite difference , Expression of any value of y in terms of the initial value y0 and differences, Newton Forward difference, Newton Backward difference, Central differences. It provides technical skills to understand and develop the numerical ability.

Course Outcomes (CO)

I/ 1	CO1	Identify the logic behind Solution of algebraic and Transcendental
K1 CO1		equations , Bisection Method, Newton – Raphson Method.
K2	CO2	Understand the concepts of , Finite difference , Expression of any
KZ	CO2	value of y in terms of the initial value y0 and differences
КЗ	CO3	Analyze the problems on Newton Forward difference and its
K3 CO3		problem.
K2	CO4	Develop the problems on Newton backward difference and its
IXZ	004	problem
КЗ	CO5	Apply the concepts to solve a problem for Central differences.

Unit I:

Solution of algebraic and Transcendental Equations – Bisection Method - Newton – Raphson Method.

Unit II:

Finite difference – Definition – First difference – Higher differences – Difference tables – Expression of any value of y in terms of the initial value y_0 and differences.

Newton Forward difference – Simple problems.

Unit IV:

Newton Backward difference – Simple problems.

Unit V:

Central differences – Properties of the operator D – simple problems.

TEXT BOOKS:

S.No	Name of the Book	Author	Publisher	Year Of Publication
1.	Introductory methods of Numerical Analysis – 2nd Edition	S.S.Sastry	Prentice Hall of India Pvt Ltd, New Delhi	1990
2.	Numerical Methods in Science and Engineering – 2nd Edition (revised)	Dr.M.K.Venkata raman	The National Publishing Company, Chennai.	2003

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M
CO2	S	S	M	M	S
CO3	M	S	M	S	M
CO4	S	M	S	M	S
CO5	S	M	M	M	S

VALUE ADDED COURSE-I

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M 19UMAVA01		Value Added – I - Ver	bal and Logical Reas	oning
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	III	2	30	2

Course Objectives

This course introduces fundamental concepts such as verbal and logical reasoning in Quantitative aptitude. It covers concepts such as Verbal Reasoning, Non - Verbal Reasoning, Problems on seating Arrangements, Family based on problems, Odd man out and series. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO1	Identify the logic behind Verbal Reasoning and its problem.
K2	CO2	Understand the concepts of Verbal Reasoning and its problem.
K2	CO3	Understand the concepts of Non - Verbal Reasoning and its problem.
K2	CO4	Develop the Family based on problems.
КЗ	CO5	Apply the concepts to solve a problem for Odd man out and series.

Unit I:

Verbal Reasoning. (Section: 4, 8)

Unit II:

Verbal Reasoning. (Section: 13, 16)

Unit III:

Non - Verbal Reasoning. (Section: 4, 5, 6, 8)

Unit IV:

Blood relations problems. (Section: 5)

Unit V:

Odd man out and series. (Section-I:35)

TEXT BOOKS:

S.No	Name of the Book	Author	Publisher	Year Of Publications
1.	Verbal and Logical	R.S.Aggarwal	S.Chand Co	2001
	Reasoning		Ltd,152,	
			Annasalai,	
			Chennai.	
2.	Quantitative Aptitude for	R.S.Aggarwal	S.Chand Co	2001
	competitive Examinations		Ltd, 152,	
			Annasalai,C	
			hennai.	

Mapping with Programme Outcomes:

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	M
CO2	S	M	S	M	S
CO3	M	M	M	S	M
CO4	S	M	S	M	M
CO5	S	M	M	S	S

VALUE ADDED COURSE - II

Programme Code : UMA		B.Sc. Mathematics		
Course Code:M19UMAVA02		Value Added – II - Quantitative Aptitude Examinations		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	2	30	2

Course Objectives

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such as Time & Work, Pipes & Cistern, Time & Distance, Problems on Trains, Boats & Streams. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes (CO)

K1	CO1	Identify the logic behind Time & Work and its problem.
K2	CO2	Understand the concepts of Pipes & Cistern and its problem.
K2	CO3	Analyze the problems on Time & Distance and its problem.
K2	CO4	Develop the problems on Trains and its problem
КЗ	CO5	Apply the concepts to solve a problem for Boats & Streams.

Unit I:

Time & Work (Section-I:15)

Unit II:

Pipes & Cistern (Section-I: 16)

Unit III:

Time & Distance (Section-I: 17)

Unit IV:

Problems on Trains (Section-I: 18)

Unit V:

Boats & Streams (Section-I: 19)

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Year Of Publications
1.	Quantitative Aptitude for competitive Examinations	R.S.Aggarwal	S.Chand Co Ltd, 152, Annasalai, Chennai.	2001

Mapping with Programme Outcomes:

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	M	M	M
CO2	S	M	S	M	S
CO3	M	M	M	S	M
CO4	S	M	S	M	M
CO5	S	M	M	S	S

S- Strong; **M**-Medium.

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: B.Sc. MATHEMATICS

S.No.	Course Name	Course Code	Employability	Entrepreneurship	Skill Development
1.	Vector Calculus	M16UMA02			1
2.	Calculus	M16UMA03	✓		
3.	Differential Equations And Laplace Transforms	M16UMA05	· /		
4.	Aptitude Examination -I	M16UMAS01			✓
5.	Mathematics For Competitive Examinations	M16UMA07			✓
6.	Operation Research - I	M16UMA12	✓		
7.	Non-Verbal Reasoning	M16UMAS04			· 1
8.	Discrete Mathematics	M16UMAE01		2	✓
9.	Graph Theory	M16UMAE05	✓		
10.	Project	M16UMAPR1		√	

Head of the Department

Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

8 A

PRINCIPAL

AAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

kalippatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: B. Sc. MATHEMATICS

S. No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)
1.	Vector Calculus	M16UMA02	Employability	2016 - 2017
2.	Calculus	M16UMA03	Employability	2016 - 2017
3.	Differential Equations And Laplace Transforms	M16UMA05	Skill development	2017 - 2018
4.	Aptitude Examination -I	M16UMAS01	Skill development	2017 - 2018
5.	Mathematics For Competitive Examinations	M16UMA07	Employability	2017 - 2018
6.	Operation Research - I	M16UMA12	Skill development	2018 - 2019
7.	Non-Verbal Reasoning	M16UMAS04	Skill development	2018 - 2019
8.	Discrete Mathematics	M16UMAE01	Employability	2018 - 2019
9.	Graph Theory	M16UMAE05	Skill development	2018 - 2019
10.	Project	M16UMAPR1	Entrepreneurship	2018 - 2019

Head of the Department

Head of the Department of Mathematics
Mahendra Arts & Science College.

KALIPPATTI - 637 501.

Namakkal District

ext

Principal
PRINCIPAL
AHENDRA ARTS & SCIENCE COLLEGE
(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEGE

(Kutonemous)

*alippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

BACHELOR OF SCIENCE

CHOICE BASED CREDIT SYSTEM

SYLLABUS FOR B.Sc. MATHEMATICS

For the students admitted from the Academic Year 2016-2017 onwards 80

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEG

(Autonomous)

B.Sc., DEGREE COURSE

(Semester System)

FACULTY OF SCIENCE BRANCH - I: MATHEMATICS

(Choice Based Credit System)

(For Periyar University Affiliated Colleges)

REGULATIONS AND SYLLABUS (with effect from 2016-2017 onwards)

1. Objectives of the Course

Mathematics to-day is penetrating all fields of human endeavor and therefore it is necessary to prepare the students to cope with the advanced developments in various fields of Mathematics. The objectives of this course are the following:

- (a) To import knowledge in advanced concepts and applications in various fields of Mathematics.
- (b) To provide wide choice of elective subjects with updated and new areas in various branches of Mathematics to meet the needs of all students.

2. Eligibility for Admission:

A Pass in the Higher Secondary Examination of TamilNadu Higher Secondary Board or some other Board accepted by the Syndicate as equivalent thereto with Mathematics (other than Business mathematics) as one of the subjects.

3. Duration of the Course:

The course of study of Bachelor of Science in Mathematics shall consist of three academic years divided into six semesters with 142 credits. Each Semester consists of 90 working days.

4. Course of Study:

The courses of study for the degree shall be in Branch I - Mathematics (Choice Based Credit System) with internal assessment according to syllabi prescribed from time to time. The **Internal Assessment** mark is distributed to 3 components viz**Tests**,

Assignment and Attendance as 15, 05 and 05 marks, respectively.

Total Number of Marks: 3900For Each Paper: 100 (Int. 25 + Ext. 75).

5. Examinations:

The theory of examination shall be of three hours duration for each paper at the end of each semester. The candidate failing in any subject(s) will be permitted to appear for each failed subject(s) in the subsequent examinations. The practical examinations for UG course shall be conducted at the end of the even semesters only.

S.No	Course Code	Subject	Periods	Exam Duration		axim Marl		Credi	
		J		(Hrs)	CA	CE	Total	Total Point	
		SEMESTER – I							
1	M16UFTA01	Tamil - I/ Hindi - I/ Telugu - I/ Malayalam — I	5	3	25	75	100	3	
2	M16UFEN01	Foundation English - I	5	3	25	75	100	3	
3	M16UMA01	Core 1: Classical Algebra and Trigonometry	6	3	25	75	100	5	
<mark>4</mark>	M16UMA02	Core 2: Vector Calculus	<mark>5</mark>	3	25	75	100	<mark>4</mark>	
5	M16UPHA01	Allied I: Physics – I	4	3	25	75	100	4	
6	_	Allied Practical I : Physics	3	-	-	-	-	-	
7	M16UVE01	Value Education: Yoga	2	3	25	75	100	2	
		Total	30				600	21	
9	M16UFEN02	Malayalam – II Foundation English – II	5	3	25 25	75 75	100	3	
0	M16UFTA02	Tamil - II/ Hindi - II/ Telugu - II/			2.5	7.5	100	2	
	N (1 (1 IEEN 102	-							
10	M16UFEN02 M16UMA03	Core 3: Calculus	<u> </u>	3	25 25	75	100	3 4	
11	M16UMA04	Core 4: Analytical Geometry 2D And 3D	5	3	25	75	100	5	
12	M16UPHA02	Allied II: Physics – II	4	3	25	75	100	4	
13	M16UPHAP01	Allied Practical I: Physics	3	3	40	60	100	2	
14	M16UES01	Value Education: Environmental Studies	2	3	25	75	100	2	
	-	Total	30			l	700	23	
		SEMESTER – III		T	T		· · · · · · · · · · · · · · · · · · ·		
15	M16UFTA03	Tamil - III/ Hindi - III/ Telugu - III/ Malayalam - III	5	3	25	75	100	3	
16	M16UFEN03	Foundation English - III	5	3	25	75	100	3	
17	M16UMA05	Core 5: Differential Equations and Laplace transforms	<mark>4</mark>	3	25	<mark>75</mark>	100	5	
18	M16UMA06	Core 6: Mechanics-I	5	3	25	75	100	5	
19	M16USTA02	Allied III: Mathematical Statistics	5	3	25	75	100	4	
	MALCHICT A DOL	Allied Practical III: Statistics	2	-	<u> </u>	<u>-</u>	-		
20	M16USTAP01			3	25	75	100	2	
20 21	M16UMAS01	SBEC:-I Aptitude Examination -I	<mark>2</mark>	_			_		
20		SBEC:-I Aptitude Examination -I NMEC-I Total	2 30	3	25	75	100 700	2 24	

		SEMESTER – IV						
23	M16UFTA04	Tamil - IV/ Hindi - IV/ Telugu - IV/ Malayalam — IV	5	3	25	75	100	3
24	M16UFEN04	Foundation English - IV	5	3	25	75	100	3
25	M16UMA07	Core 7: Mathematics for competitive Examinations	4	3	25	75	100	4
26	M16UMA08	Core 8: Mechanics-II	5	3	25	75	100	5
27	M16USTA09	Allied IV: Statistical Inference	5	3	25	75	100	4
28	M16USTAP01	Allied Practical II: Statistics	2	3	40	60	100	2
29	M16UMAS02	SBEC:-IIAptitude Examination -II	2	3	25	75	100	2
30	M16UCSN04	NMEC-II- HTML and Web Design	2	3	25	75	100	2
	1	Total	30				800	25
		SEMESTER – V		T		T		
31	M16UMA09	Core 9: AlgebraicStructures–I	6	3	25	75	100	5
32	M16UMA10	Core 10: Real Analysis – I	6	3	25	75	100	4
33	M16UMA11	Core 11: Numerical Analysis	6	3	25	75	100	4
34	M16UMA12	Elective (Group - A)	<u>5</u>	3	25	75	100	4
35 26	M16UMAS03	Core 12: Operation Research –I	<u>5</u>	3	25	75 75	100	4
36	MIOUMASUS	SBEC:-IIIVerbal Reasoning Total	2	3	25	75	100	2
		Totai	30				600	23
		SEMESTER – VI						
37	M16UMA13	Core 13: AlgebraicStructures-II	6	3	25	75	100	5
38	M16UMA14	Core 14: Real Analysis – II	6	3	25	75	100	4
39	M16UMA15	Core 15: Complex Analysis	6	3	25	75	100	4
<mark>40</mark>		Elective (Group - B)	<mark>5</mark>	3	<mark>25</mark>	<mark>75</mark>	100	<mark>4</mark>
41	M16UMA16	Core 16: Operation Research -II	5	3	25	75	100	4
4 2	M16UMAS04	SBEC-IV Non - Verbal Reasoning	2	3	25	75	100	2
43	M16UMAPR1	Project			25	75	100	4
44	M16UEX01	Extension Activities	-	-		-	-	1
		Total Grand Total	30				700	28

A) ALLIED SUBJECTS FOR B.Sc., MATHEMATICS

PHYSICS & STATISTICS

SEMESTER	SUBJECT	CODE
I	Allied Physics-I	M16UPHA01
II	Allied Physics-II	M16UPHA02
II	Allied Physics-Practical	M16UPHAP01
III	Allied Statistics-II	M16USTA02
IV	Allied Statistics-III	M16USTA03
IV	Allied Statistics-Practical	M16USTAP01

ALLIED MATHEMATICS FOR B.Sc. STATISTICS, PHYSICS & CHEMISTRY MAJOR STUDENTS

Paper I	Allied Mathematics –I Algebra, Integralcalculus And Fourier Series	M16UMAA01
Paper II	Allied Mathematics –II Differential Equations And Laplace transforms	M16UMAA02
Paper III	Allied Mathematics – Practical	M16UMAAP01

ALLIED MATHEMATICS FOR B.Sc., COMPUTER SCIENCE and B.C.A. Major Student

	Allied – I - Mathematics	
Paper Name	Algebra, Differential Equations And	M16UMAA03
	Laplace Transforms	

	ELECTIVE (GROUP – A)				
((Student shall select any one of the following subject as Elective in fifth semester)				
S.No	Course Title	Course Code			
1.	Discrete Mathematics	M16UMAE01			
2.	Elementary Number Theory	M16UMAE02			
3.	Astronomy	M16UMAE03			
	ELECTIVE (GF	ROUP – B)			
(Student shall select any one of the following	g elective course in the sixth semester)			
S.No	Course Title	Course Code			
1.	Mathematical Modeling	M16UMAE04			
<mark>2.</mark>	Graph Theory	M16UMAE05			
3.	Probability Theory	M16UMAE06			

B) SKILL BASED ELECTIVE COURSES:

SEMESTER	COURSE	COURSE CODE
III	Aptitude Examination -I	M16UMAS01
IV	Aptitude Examination -II	M16UMAS02
V	Verbal Reasoning	M16UMAS03
VI	Non - Verbal Reasoning	M16UMAS04

C) NON - MAJOR ELECTIVE COURSES:

NON-MAJOR ELECTIVE COURSE (GROUP – A)				
1. Competitive Examination – I	M16UMAN01			
2. Matrix Algebra	M16UMAN02			
NON-MAJOR ELECTIVE COURSE (GROUP – B)				
1. Competitive Examination – II	M16UMAN03			
2. Numerical Methods	M16UMAN04			

D) VALUE ADDED COURSES:

SEMESTER	COURSE	COURSE CODE
III	Competitive Examination-III	M16UVA05
IV	Verbal and Logical Reasoning	M16UVA06

6. UNIFORMITY IN THE NUMBER OF UNITS IN EACH PAPER:

Each theory paper shall consist of five units. The Question paper shall consist of questions uniformly distributed among all the units. For theory paper without practicals, **Max marks is 75.**

7. A. QUESTION PAPER PATTERN FOR ALL UG COURSES WITHOUT PRACTICAL:

Time: Three Hours Maximum Marks: 75

Part A: $(10 \times 2 = 20)$

Answer ALL Questions (Two Questions from Each Unit)

Part B: $(5 \times 5 = 25)$

Answer ALL Questions (One Question From Each Unit with internal choice)

Part C: $(3 \times 10 = 30)$

Answer Any Three Questions out of Five Questions (One Question from Each Unit)

B. SKILL BASED ELECTIVE COURSE - C PROGRAMMING - PRATICAL

QUESTION PATTERN EXTERNAL MARK: 60 INTERNAL MARK: 40 RECORD WORK – 15

Part - A: (2X15 = 30)

Answer any two out of Four Questions

Part – B: (1X5=15)

Answer any one out of two questions

Practical - 45

Mark Allotment: 60 – External <

Record - 15

40 - Internal

C. ALLIED – MATHEMATICS PRATICAL (3x15 = 45)

Answer any Three out of Five Questions

Practical - 45

Mark Allotment: 60 – External <

Record - 15

8. PASSING MINIMUM:

The Candidates shall be declared to have passed the examination if the candidates secure not less than 30marksin the University examination in each theory paper without practical.

9. PROJECT

There shall be a Mainproject work at end of Semester VI as prescribed by the respective boards of studies, if applicable.

The following guidelines / clarifications are offered for the Project with Viva-voce:

- 1. The project should be valued for 75 marks by an external examiner; however the Viva-Voce examination should be conducted by both the external examiner appointed by the College and the internal examiner / guide/teacher concerned. The average of marks awarded in the viva-voce by both the external examiner and the internal examiner is to be intimated along with the marks obtained by the candidate in project evaluation, to the College.
- 2. The Project Report may consist a minimum of 60 pages.
 - 3. The candidate has to submit the Project Report 30 days before the commencement of the VI Semester Examinations.
- 4. A candidate who fails in the Project/Dissertation or is absent may resubmitthe report, on the same topic, with necessary modification / correction /improvements in the subsequent even semester examination for evaluation and shall undergo vivavoce examination.

10. NOTE:

- 1. The Non Major Elective Course Papers Syllabus will be given at the end of this book.
- 2. This Paper should be handling and valued by Mathematics Department.
- 3. For University Practical Examination both Internal and External Examiners should be appointed from Mathematics Department.

SEMESTER-I

Core - I	B.Sc. Mathematics	2016 - 2017
M16UMA01	CLASSICAL ALCEDDA AND TRICONOMETRY	
Credit: 5	CLASSICAL ALGEBRA AND TRIGONOMETRY	

Subject description:

This course focuses on the different typesof series, also discusses the standard methods of solving both polynomial and transcendental type equations.

Goal:

To enable the students to learn about the series and to find the roots for the different types of the equation.

Objectives:

On successful completion of this course the students should gain knowledge about the of series and solving equations.

Unit I -

Definition of Matrix – Addition ,Subtraction , Multiplication of Matrices . Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix – Cayley – Hamilton theorem (statement only) and its problems –Diagonalisation of Matrices – problems.

Unit II

Polynomial equations – Imaginary and Irrational roots – relation between roots and coefficients of equations – Symmetric functions of roots in terms of coefficients of third degree equation – problems.

Unit III

Sum of the powers of the roots of an equation – Newton's Theorem on the sum of the powers of the roots – Transformation of equations – Roots with sign changed – Roots multiplied by a given number – Reciprocal equations – problems.

Unit IV

To increase or decrease the roots of a given equation by a given quantity. Removal of terms - Square of the roots – Transformations in general – Descarte's rule of signs –problems.

Unit V

Expansions of $\sin n\theta$, $Cosn\theta$ and $Tan n\theta - Expansions of <math>sin_n\theta$, $cos_n\theta$ -Expansions of $sin\theta$, $cos\theta$ and $tan\theta$ in terms of θ – Hyperbolic and inverse hyperbolic functions and their properties – Logarithm of a complex number – General principal values – problems.

Text Book:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Algebra- Volume I	T.K.Manickavas agamPillai and S. Narayanan.	Vijay Nicole Imprints Pvt, Ltd,#c-7,Nelson Manickam Road,Chennai- 600029	2004
2.	Trigonometry	T.K.Manickavas agamPillai and S. Narayanan	Vijay Nicole Imprints Pvt, Ltd,#c-7,Nelson Manickam Road, Chennai- 600029	2004

Reference:

1.	Algebra, calculus	Dr.P.R.Vittal.	Margham	2000
	and		publications,24,	
	Trigonometry		Rameswaram	
			Road, T.Nager,	
			Chennai-	
			600017.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Three Assignments can be given from the following topics

- 1. Cayley Hamilton theorem
- 2. Diagonalisation of Matrices
- 3. Newton's Theorem

Group Task:

- 1. Polynomial equations
- 2. Descarte's rule of signs

SEMESTER-I

Core - II	B.Sc. Mathematics	2016 - 2017
M16UMA02	VECTOR CALCULUS	
Credit: 4	VECTOR CALCULUS	

Subject Description:

This course presents the circular functions, hyperbolic functions, differentiation of functions in scalar and vector field.

Goals:

To enable the students to learn about the expansion of trigonometrical functions and to gain knowledge about vector treatment which will help them to deal the analytical geometry problems using vector method.

Objectives:

On successful completion of this course the students should have gained knowledge about expansion of trigonometric functions, line integral, surface integral, volume integral and Fourier series.

Vector Differentiation

Unit I

Vector differentiation: Limit of a vector function – continuity and derivative of vector function - Geometrical and Physical significance of vector differentiation - Partial derivative of vector function – gradient and directional derivative of scalar point functions – Equations of tangent plane and normal line to a level surface.

Unit II

Vector point function: Divergence and curl of a vector point function – solenoidal and irrational functions – physical interpretation of divergence and curl of a vector point function.

Unit III

Vector identities – Laplacian operator.

Vector Integration

Unit IV

Integration of vector functions – Line, surface and volume integrals.

Unit V

Gauss - Divergence Theorem – Green's Theorem – Stoke's Theorem (Statements only). Verification of theorems and simple problems using the theorems.

Text Book:

P. R. Vittal and V. Malini, Vector Analysis, Margham Publications, Chennai, 2006.

Unit I Chapter 1 - Page 1 - 20

Unit II Chapter 1 - Page 22 - 51

Unit III Chapter 2 - Page 54 - 72

Unit IV Chapter 2 - Page 75 - 106

Unit V Chapter 2 - Page 108 - 140

Reference(s)

- 1. T. K. ManickavasagamPillay and others, Vector Calculus, S. Viswanathan Publications.
- 2. S. Shanti Narayan, A Text Book of Vector Calculus, S. Chand and Co., New Delhi, 1966.
- 3. K. Viswanatham& S. Selvaraj, Vector Analysis, Emerald Publishers, Chennai, Reprint 1999.
- 4. P. Duraipandian, LaxmiDuraipandian, Vector Analysis, Emerald Publishers, Chennai, Reprint 2003.

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Gauss Divergence Theorem
- 2. Green'sTheorem

Group Task:

- 1. Stoke's Theorem
- 2. Integration of vector functions

SEMESTER-II

Core - III	B.Sc. Mathematics	2016 - 2017
M16UMA03	CALCULUS	
Credit:4	CALCULUS	

Subject description:

This course presents the idea of curvatures, integration of different types of functions, its geometrical applications, double, triple integrals and improper integrals.

Goal:

To enable the students to learn and gain knowledge about curvatures, integrations and its geometrical applications.

Objectives:

On successful completion of course the students should have gain about the evolutes and envelopes, different types of integrations, its geometrical application, proper and improper integration.

UNIT I: Successive Differentiation

Definition and Notations – nth derivatives – Standard forms – Partial fractions – Trigonometrical transformations – Leibnitz's theorem on the nth derivatives – Problems.

UNIT II:

Curvature-radius of curvature in Cartesian and polar forms-evolutes and envelopes- pedal equations- total differentiation- Euler's theorem on homogeneous functions.

UNIT III:

Integration of f'(x)/f(x), f'(x) \Box f(x),(px + q) \forall (ax2+bx+c)], [\forall (x-a)/(b-x)], [\forall (x-a)(b-x),1/[\forall (x-a)(b-x),1/(acosx + bsinx +c), 1/(acos2x+bsin2x+c), Integration by parts

UNIT IV:

Reduction formulae- problems- evaluation of double and triple integrals- applications to calculations of areas and volumes-areas in polar coordinates.

UNITY:

Change of order of integration in double integral- Jacobions.- change of variables in double and triple integrals-Notion of improper integrals, their convergence, simple tests for convergence simple problems.

Text Books:

1. Calculus vol 1 and vol 2"-- S. Narayanan and T.K.M. Pillai. Viswanathan Publishers

Reference:

- 1. Mathematics for BSc Vol I and. II P. Kandasamy&K.ThilagarathyS.Chand and Co-2004
- 2.A Text book of calculus- Shanthi Narayanan &J.N.Kapoor, S.Chand& Co.

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Integration problems
- 2. Reduction formula

Group Task:

- 1. Leibnitz's theorem on the nth derivatives
- 2. Radius of curvature

SEMESTER-II

Core - IV	B.Sc. Mathematics	2016 - 2017
M16UMA04	ANALYTICAL CEOMETRY ID AND ID	
Credit: 5	ANALYTICAL GEOMETRY 2D AND 3D	

Subject Description:

This course gives emphasis to enhance student knowledge in two dimensional and three dimensional analytical geometry. Particularly about two dimensional conic sections in polar coordinates and the geometrical aspects of three dimensional figs, viz, sphere, cone and cylinder.

Goal:

To enable the students to learn and visualize the fundamental ideas about co-ordinate geometry.

Objectives:

On successful completion of the course students should have gained knowledge above the regular geometrical figures and their properties.

UNIT I:

Analytical geometry of 2D - Straight line - Plane –Simple problems

UNIT II:

Analytical geometry of 2D-polar coordinates equation of a conic -directrix-chord tangent-normal- simple problems - only in deriving equation of a conic.

UNIT III:

Analytical Geometry 3D-stright.lines-coplanarity of straight-line-shortest distance (S.D) and equation of S.D between two lines-simple problems.

UNIT IV:

Sphere: standard equation of sphere-results based on the properties of a sphere-tangent plane to a sphere- equation of a circle.

UNIT V:

Cone and cylinder: Cone whose vertex is at the origin- envelope cone of a sphere-right circular cone-equation of a cylinder-right circular cylinder.

Text Book:

- 1. Analytical Geometry by P. DuraiPandian& others (unit I & II)
- 2. Solid Geometry by N.P. Bali-Laxmi Publications (P) Ltd (unit III,IV& V)

Reference:

1. Analytical Geometry of 2D by T.K. M. Pillai and Others – Visvanathan Publications

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Straight line problems
- 2. Plane problems
- 3. Sphere problems

Group Task:

- 1. Cone problems
- 2. Cylinder problems

SEMESTER-III

Core - V	B.Sc. Mathematics	<mark>2016 - 2017</mark>
M16UMA05 Credit: 5	DIFFERENTIAL EQUATIONS AND LAPLACE TRA	ANSFORMS

Subject Descriptions:

This course presents the method of solving ordinary differential Equations of First Orderand Second Order, Partial Differential equations. Also it deals with Laplace Transforms, itsinverse and Application of Laplace Transform in solving First and Second Order Differential Equations with constant coefficients.

Goals:

It enables the students to learn the method of solving Differential Equations.

Objectives:

End of this course, the students should gain the knowledge about the method of solving Differential Equations. It also exposes Differential Equation as a powerful tool in solving problems in Physical and Social sciences.

Differential Equations

Unit I

Differential Equations - Linear differential equations with constant co-efficients – The operators D and D₋₁ – Particular Integral – Special methods of finding particular integral – Linear equations with variable co-efficients – To find the particular integral – Special method of evaluating the particular integral when x is of the form x_m.

Unit II

Exact differential equations – conditions of integrability of Mdx + Ndy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating factors – equations of the first order but of higher degree – Solvable for x, y, dy/dx – Clairaut's form – equations that do not contain x explicitly - Equations that do not contain y explicitly- Equations homogeneous in x & y.

Unit III

Partial differential equations - Derivation of partial differential equations by elimination of constants, arbitrary functions - Different Integrals of P.D.E. - Solutions of P.D.E. in some simple cases- Standard types of first order equations - Standard I, II, III, IV - Equations reducible to the standard forms - Lagrange's equation.

Laplace Transforms

Unit IV

The Laplace Transforms – Sufficient conditions for the existence of the Laplace Transforms – Laplace Transforms of periodic functions – General theorems – Evaluation of certain integrals using Laplace Transforms.

Unit V

The inverse transforms – Inverse transforms of functions – Method of partial fractions – Application of Laplace Transforms to solve ordinary differential equations.

Text Book:

S. Narayanan & T. K. ManickavasagamPillay, Calculus Volume III, S. Viswanathan Pvt. Ltd., 2008

Unit I Chapter 2 § 1, 1.2, 2, 3, 4, 8, 8.1,8.2,8.3

Unit II Chapter 1 § 3.1 – 3.3, 4, 5, 5.1 – 5.5, 6.1, 7.1 - 7.3

Unit III Chapter 4 § 1, 2, 2.1, 2.2, 3, 4, 5, 5.1 – 5.5, 6

Unit IV Chapter 5 § 1, 1.1, 1.2, 2, 3.4, 5

Unit V Chapter 5 § 6, 7, 8, 9

References:

- 1. P. R. Vittal, Differential Equations and Laplace Transforms, Margham Publications, 2004.
- 2. S. Sudha, Differential Equations and Integral Transforms, Emerald Publishers, 2003

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Second order differential equations.
 - Type I, II & III
- 2. Clairaut's form

Group Task:

- 1. Properties of Laplace transforms
- 2. Partial differential equation Type I,II,III & IV

SEMESTER-III

Core -VI	B.Sc. Mathematics	2016 - 2017
M16UMA06	MECHANICS	
Credit: 5	MECHANICS - I	

Objective:

The purpose of this course is to learn and understand principles of mechanics. Topics include: Forces- Parallelogram, Triangle, Co-planar, Moments and frictions. And also is to provide the students the necessary analytical skills to solve the variety of mechanics equations and related problems.

Learning Outcomes:

Students who successfully complete the course will demonstrate the following outcomes by tests and homework.

- 1. An ability to identify the mechanical systems, Force, Friction, Moment and momentum.
- 2. An ability to predict the Forces, Coplanar Forces and Frictions.

UNIT I

Forces acting at a point - Parallelogram of forces - Triangle of forces - Lami's Theorem - Extended form of the parallelogram of law of forces - #Resultant of any number of coplanar forces acting at a point#.

UNIT II

Resultant of two like and unlike parallel forces acting on a rigid body – Moments of a force – Varignon's Theorem of moments – Couple – Equilibrium of two couples.

UNIT III

Equilibrium of three forces acting on a rigid body – Three coplanar forces – Two trigonometrical theorems – Coplanar forces – Reduction of any number of coplanar forces – Conditions for a system of forces to reduce to a single force or to a couple – Equation to the line of action of the resultant.

UNIT IV

Friction – Laws of friction – Co-efficient of friction, angle and cone of friction – Equilibrium of a particle on a rough inclined plane under any forces – Problems on friction.

UNIT V

Uniform string under the action of gravity - Equilibrium of strings and chain under gravity - Equation of common catenary - #Tension at any point# - Geometrical properties of the common catenaries - Problems.

Text Book:

M.K. Venkatraman, Statics, Agasthiar Publication (1999).

UNIT I Chapter 2 Sections 3 - 5, 9, 10 and 15 **UNIT II** Chapter 3 Sections 1 - 4, 7, 8, 12 and Chapter 4 Sections 1, 2 UNIT III Chapter 5 Sections 1, 2, 5 and Chapter 6 Sections 1, 2, 3, 5 and 8

UNIT IV Chapter 7 Sections 1 - 8, 10 and 13

UNIT V Chapter 11 Sections 1 - 6

Books for Reference:

- 1. A.V. Dharmapadam, Statics, S.Viswanathan Printers & Publishers Pvt. Ltd. (2009).
- 2. P. Duraipandian, LaxmiDuraipandian, MuthamizhJayapragasam, Mechanics, S. Chand & Company Ltd. (2010).

Additional web resources:

1. en.wikipedia.org/wiki/, 2. mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- Lami's Theorem
- Varignon's Theorem of moments

Group Task:

- The Mechanical System
- Laws of friction

SEMESTER-III

Skill Based Elective Course - I

SBEC - I	B.Sc. Mathematics 20	16 - 2017
M16UMAS01	Aptitude Examination -I	
Credit: 2	Apulluc Examination -1	

Objective:

To enable the students to appear competitive examinations confidently.

UNIT I

Problems on numbers, Problems on Ages.

UNIT II

Surds & Indices, Profit & Loss.

UNIT III

Time & Work, Pipes& Cistern, Time & Distance.

UNIT IV

Problems on Trains, Boats& Streams, Allegation or Mixture.

UNIT V

Simple Interest, Compound Interest

Text Book:

R.S. Aggarwal, Quantitative Aptitude, S. Chand & Company Ltd. (2007).

Reference:

- 1. R.S. Aggarwal, Arithmetic (Subjective and Objective) For Competitive Examinations, S. Chand and Company Ltd. (2004).
- 2. R.S. Aggarwal, Objective Arithmetic, S. Chand & Company Ltd. (2004).

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1.Problems on numbers,
- 2. Problems on Ages.

Group Task:

- Simple Interest, Compound Interests
- Time & Work, Pipes & Cistern

SEMESTER-IV

Core - VII	B.Sc. Mathematics	2016 - 2017
M16UMA07	MATHEMATICS FOR COMPETITIVE EXAM	INATIONS
Credit: 4		

Objective:

To enable the students to appear competitive examinations confidently.

UNIT I

Numbers: Problems on Addition, Subtraction, Multiplication and Division (Shortcut Methods) – Various tests for Divisibility – Prime and Composite numbers – #Various types of numbers#.

UNIT II

HCF and LCM of numbers - Decimal fractions: Addition, Subtraction, Multiplication and Division of Decimal fractions - #H.C.F and L.C.M of Decimals# – Rule for converting Pure and Mixed Recurring Decimals into a Vulgar Fractions.

UNIT III

Simplification - Square Root- Square Root by means of Factors – General Method – Square Root of Decimal Fractions - Square Root of Vulgar Fractions - #Cube Root#.

UNIT IV

Percentage: Shortcut Method – Problems based on Population, #Average#, Ratio and Proportion.

UNIT V

Partnership, Chain rule - Direct proportion - Indirect Proportion.# # Self-study portion.

Text Book:

R.S. Aggarwal, Quantitative Aptitude, S. Chand & Company Ltd. (2007).

Reference:

- 1. R.S. Aggarwal, Arithmetic (Subjective and Objective) For Competitive Examinations,
- S. Chand and Company Ltd. (2004).
- 2. R.S. Aggarwal, Objective Arithmetic, S. Chand & Company Ltd. (2004).

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- Decimal fractions: Addition, Subtraction, Multiplication
- Square Root by means of Factors

Group Task:

- Square Root of Vulgar Fractions
- Percentage: Shortcut Method

SEMESTER-IV

Core -VIII	B.Sc. Mathematics	2016 - 2017
M16UMA08	MECHANICS II	
Credit: 5	MECHANICS – II	

Subject Description:

This course provides the knowledge about the field Kinematics, projectile, simple harmonic motion and impact of a particle on a surface.

Goal:

To enable the students to apply Laws, Principles, Postulates governing the Mechanics in physical reality.

Objectives:

End of this course, the student understand the reason for dynamic changes in the body.

UNIT I

Kinematics - Speed, Displacement - Velocity - Composition of velocities - Triangle of velocities - Relative velocity - Angular velocity - Relative angular velocities - Accelerations - Motion in a straight line under uniform acceleration - Simple problems.

UNIT II

Projectiles – Path of the projectile is a parabola – Characteristics of the motion of a projectile – Velocity of the projectile in magnitude and direction at the end of time – Range on an inclined Plane – Simple problems.

UNIT III

Collision of elastic bodies – Newton's experimental law – Impact of a smooth sphere on a fixed smooth plane – Direct impact of two smooth spheres – Loss of Kinetic Energy - Oblique impact of two smooth spheres and loss of Kinetic Energy – Simple problems.

UNIT IV

Simple harmonic motion - Simple harmonic motion in a straight line - General solution of a simple harmonic motion - Composition of two simple harmonic motions of the same period and in the same straight line - Composition of simple harmonic motions of the same period in two perpendicular directions - Simple problems.

UNIT V

Motion under the action of central forces – Velocity and acceleration in polar coordinates – Differential equation of central orbits – Pedal equation of the central orbit – Law of the inverse square – Simple problems.

Text Book:

M. K. Venkatraman, A Text Book of Dynamics, Agasthiar Publications (1970).

UNIT I Chapter III Sections 3.1 to 3.4, 3.7, 3.10, 3.11, 3.15, 3.17 and 3.22

UNIT II Chapter IV Sections 6.2, 6.4, 6.5, 6.9 and 6.12

UNIT III Chapter VIII Sections 8.3 - 8.8

UNIT IV Chapter X Sections 10.2, 10.3, 10.6 and 10.7

UNIT V Chapter XI Sections 11.2, 11.4, 11.6, 11.8

Books for reference:

- 1. M.L. Khanna, Dynamics, Jai PrakashNath and Company, Meerut, Tenth Edition (1975).
- 2. K. VisvanathaNaik and M.S. Kasi, Dynamics, Emerald Publishers, Chennai, (1992).

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Projectiles
- 2. Impact of a particle on a surface.

Group Task:

- 1. Simple harmonic motion
- 2. Impact of a particle on a surface

SEMESTER-IV Skill Based Elective Course – II

SBEC- II	B.Sc. Mathematics	2016 - 2017		
M16UMAS02	Antitudo Evamination II			
Credit:2	Aptitude Examination -II			

Objective:

To enablethe studentsto appear competitive examinations confidently

UNIT I

Logarithms, Races & Games of skill

UNIT II

Area, Volume& Surface Areas

UNIT III

Calendar, Clocks, Stocks & Shares

UNIT IV

Permutations & Combinations, Probability

UNIT V

Banker's Discount, Heights & Distance, Odd Man out & Series

Text Book:

R.S. Aggarwal, Quantitative Aptitude, S. Chand & Company Ltd. (2007).

Reference:

- 1. R.S. Aggarwal, Arithmetic (Subjective and Objective) For Competitive Examinations, S. Chand and Company Ltd. (2004).
- 2. R.S. Aggarwal, Objective Arithmetic, S. Chand & Company Ltd. (2004).

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2. mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Area, Volume.
- 2. Surface Areas

Group Task:

- Surface AreasTime
- Work, Pipes & Cistern

SEMESTER-V

Core - IX	B.Sc. Mathematics	2016 - 2017
M16UMA09	ALGEBRAIC STRUCTURES – I	
Credit: 5	ALGEBRAIC STRUCTURES - I	

Subject description:

This course provides knowledge about sets, mappings, different types of groups and rings.

Goals:

To enable the students to understand the concepts of sets, groups and rings. Also the mappings on sets, groups and rings.

Objective:

On successful completion of course the students should have concrete knowledge about the abstract thinking like sets, groups and rings by proving theorems.

Unit I

Group – Definition – Examples – Some Preliminary lemmas – Problems – Subgroups – definition – lemmas – cosets – definition – theorems – Lagrange's Theorem – order of an element – Euler Theorem – Fermat Theorem. (Sections 2.1 to 2.4).

Unit II

A Counting Principle – Normal Sub Groups – Definition – Properties – Problems – Quotient groups – Definitions – Lemma. (Sections 2.5 and 2.6).

Unit III

Homomorphism – Definition – Examples - Lemmas - Kernal of a homomorphism – Fundamental theorem – Automorphism – Definition – Inner Automorphism – Lemmas – Examples – Cayley's Theorem. (Sections 2.7 – 2.9 excluding application 1 & 2).

Unit IV

Ring – Definition – Examples – some special classes of Rings – Zero Divisor – Integral Domain - Field - Definition –Examples-Ideals – Quotient Rings – Maximal ideal.(sections 3.1, 3.2, 3.4 & 3.5).

Unit V

The Field of Quotient of an Integral Domain – Euclidean Rings – Definition – Principal ideal Ring – Greatest common divisor – Properties – Unique factorization theorem (sections 3.6 & 3.7).

Text Books:

f
ation

References:

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	A first course in modern algebra	A.R.Vasistha	Krishna PrekasanMandh ir, 9, Shivaji Road,	1983
2.	Modern Algebra	M.L.Santiago	Meerut(UP) Tata McGraw Hill ,New Delhi.	1994
3.	Modern Algebra	K.ViswanathaN aik	Emerald Publishers, 135, Anna Salai, Chennai.	1988

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Homomorphism
- 2. Quotient Rings

Group Task:

- 1. Euclidean Rings
- 2. Unique factorization theorem

SEMESTER-V

Core - X	B.Sc. Mathematics	2016 - 2017
M16UMA10	DEAL ANALYSIS I	
Credit: 4	REAL ANALYSIS – I	

Subject Description:

This course focuses on the Real and Complex number systems, set theory, point set topology and metric spaces.

Goal:

To introduce the concepts which provide a strong base to understand and analysismathematics.

Objective:

On successful completion of this course the students should gain the knowledge about real and complex numbers, sets and metric space.

Unit I

Functions – Real Valued functions – Equivalence – Countablity – Real Numbers – Least upper bounds. (Sections 1.3 to 1.7) Sequence of real numbers – Definition of sequence and subsequence – Limit of a sequence – Convergent sequences – Divergent Sequences. (Section 2.1 to 2.4)

Unit II

Bounded sequences – Monotonic sequences – operations on convergent sequences – operations on Divergent sequences – Limit superior and limit inferior – Cauchy sequences. (Section 2.5 to 2.10)

Unit III

Series of real numbers – convergence and divergence – series with non negative terms – alternating series – conditional convergence and absolute convergence – Rearrangement of series – Test for absolute convergence – series whose terms form a non increasing sequence. (Sections 3.1 to 3.7)

Unit IV

Limits and Metric spaces – limit of a function on the real line – metric spaces limits in metric spaces (sections 4.1 to 4.3)

Unit V

Continuous functions on metric spaces- Functions continuous at a point on the real line – Reformulation – functions continuous on a metric space – open sets – closed sets – Discontinuous functions on R₁. (Sections 5.1 to 5.6)

Text Books:

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Methods of Real	Richard R.	Oxford &IBH	1970
	Analysis	Goldberg.	Publishing	
			Co.Pvt.Ltd.	

References:

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	A First course in	Sterling K	Springer (India)	2004
	Real Analysis.	.Barberian.	Private Limited,	
			New Delhi.	
2.	Mathematical	Tom M. Apostel	Narosa	2002
	Analysis		Publications,	
			NewDelhi	
3.	Real Analysis	M.S.Rangachari	New Century	1996
			Book House,	
			chennai.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Sequence of real numbers
- 2. Test for absolute convergence

Group Task:

- 1. Limits and Metric spaces
- 2. Continuous functions on metric spaces

SEMESTER-V

Core -XI	B.Sc. Mathematics	2016 - 2017
M16UMA11	NUMEDICAL ANALYSIS	
Credit: 4	NUMERICAL ANALYSIS	

Subject Description:

This course presents Numerical differentiation, Numerical integration and method to solve the differential equations.

Goal:

It exposes the students to study numerical techniques as powerful tool in scientific computing.

Objective:

On successful completion of this course the student gain the knowledge about solving the linear equations numerically and finding interpolation by using difference formulae.

Unit I

Introduction to numerical analysis-The solution of algebraic and transcendental equations — Bisection method — Iteration method — Regular Falsi method, Newton-Raphson method.

Unit II

Solution of simultaneous linear algebraic equations — Direct methods — Gauss elimination method — Gauss-Jordan method — Iterative methods — Jacobi method — Gauss-Seidal method.

Unit III

Finite differences – Differences of a polynomial - Factorial polynomial - Interpolation for equal intervals – Gregory-Newton interpolation formulae – Interpolation with unequal intervals – Lagrange's interpolation formula – Inverse interpolation.

Unit IV

Numerical differentiation and integration – Newton's formulae to compute the derivative – Numerical integration – A general quadrature formula – Trapezoidal rule - Simpson's one third rule – Simpson's three-eighth rule.

Unit V

Numerical solution of ordinary differential equation – Taylor series method – Euler's method – Runge- Kutta methods-2nd Order – Runge- Kutta methods-3rd Order – Runge- Kutta methods-4th Order - Predictor corrector methods.

Text Book:

P.Kandasamy, KThilagavathy, K.Gunavathy, Numerical Methods, S.Chand& Company limited, New

Delhi, Reprint 2009.

Unit I Chapter 3 § 3.1, 3.1.1, 3.2, 3.2.1, 3.2.2, 3.3, 3.3.1, 3.4, 3.4.1, 3.4.3, 3.4.4

Unit IIChapter 4 § 4.1, 4.2, 4.2.1, 4.7, 4.8, 4.9

Unit III Chapter 5 § 5.1, 5.2, 5.3, 5.4,

Chapter 6 § 6.1, 6.2, 6.3,

Chapter 8 § 8.7, 8.8

Unit IV Chapter 9 § 9.1, 9.2, 9.3, 9.7, 9.8, 9.9, 9.10, 9.13, 9.14 Unit VChapter 11 § 11.5, 11.9, 11.12, 11.13, 11.16, 11.17

Reference(s)

- 1. S. S. Sastry, Introducing methods of Numerical analysis, Prentice Hall of India private limited, New Delhi, 3rd Edition 2002.
- 2. M. K. Venkataraman, Numerical methods in Science and Engineering, 2004

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Regular Falsi method
- 2. Bisection method

Group Task:

- 1. Trapezoidal rule
- 2. Runge- Kutta methods-2nd& 3rdOrder

SEMESTER-V

Core -XII	B.Sc. Mathematics	<mark>2016 - 2017</mark>
M16UMA12	ODED ATION DESEADOUR I	
Credit: 4	OPERATION RESEARCH - I	

Subject description:

This course contains advantages, limitations and applications of O.R, formulation of Linear Programming Problems (L.P.P), methods to solve L.P.P. like simplex method, CharnesPenality Method and Two Phase Simplex method. Also it deals about duality in L.P.P, Transportation and Assignment Problems with applications

1.

Goal:

It enables the students to use the mathematical knowledge in optimal use of resources.

Objectives:

On successful completion of this course students should have gained knowledge about optimal use of resources.

Unit I:

Basics of O.R – Definition of O.R – Characteristics of O.R – Scientific methods in O.R – Necessary of O.R in Industry – O.R and Decision Making – Scope of O.R in Modern Management – Uses and limitations of O.R. Linear Programming Problem – Formulation of L.P.P – Graphical solutions of L.P.P – Problems.

Unit II:

Simplex Method – CharnesPenality Method (or) Big – M Method - Two Phase Simplex method – Problems.

Unit III:

Duality in L.P.P – Concept of duality – Duality and Simplex Method – Problems

Unit IV

Introduction – Balanced and unbalanced T.P , Feasible solution – Basic feasible solution – Optimum solution – Degeneracy in a T.P. – Mathematical formulation – North – West Corner rule – Vogell's approximation method (unit penalty method) - Method of Matrix minima (Least cost Method) – problems – Algorithm of Optimality test (Modi Method) – Problems .

Unit V

Assignment problem – Definition – Mathematical formulation of the Assignment problem – Test for optimality by using Hungarian method - Unbalanced Assignment problem – Degeneracy in Assignment problem - Maximization case in Assignment problem – Restrictions on Assignment problem – Travelling salesman problem – problems.

Text Book:

S.No	Name of the	Author	Publishing	Year of
	<mark>Book</mark>		Company	Publication
1.	Operations	P.K.Gupta	Sultan Chand	2001
	Research 9th	,Manmohan and	&Sons,Chennai	
	Edition	KantiSwarup		

References:

- 1. Operations Research Prem Kumar Gupta D. S. Hira, S. Chand & Company Ltd, Ram Nagar, New Delhi
- 2. Operations Research Principles and Problems: S. DharaniVenkata Krishnan, Keerthi publishing house PVT Ltd.
- 3. Problems in OR. P.K.Gupta, Manmohan and KantiSwarup

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. L.P.P Graphical solutions of L.P.P.
- 2. CharnesPenality Method
- 3. Assignment problem

Group Task:

- 1. Duality and Simplex Method
- 2. Algorithm of Optimality test (Modi Method)

SEMESTER-V

Skill Based Elective Course III

SBEC - III	B.Sc. Mathematics	2016 - 2017			
M16UMAS03	VEDDAL DE ACONINC				
Credit: 2	VERBAL REASONING				

Subject Description:

This paper presents the importance of Bank, TNPSC, RRB examinations.

Goals:

To enable the students to learn about the basic problems and logical reasoning and various concepts of Verbal Reasoning.

Objectives:

On successful completion of the course the students should have: Learnt the various concept of reasoning. Learnt the decision making statements and to solve the problems based on it

Unit I

Series Completion - Coding Decoding.

Unit II

Blood Relations - Direction Sense Test.

Unit III

Logical Venn-Diagrams – Mathematical Operations.

Unit IV

Logical Sequence of Words – Inserting the Missing Character.

Unit V

Assertion and Reason – Verification of Truth of the Statement.

S.No	Name of the	Author	Publishing	Year Of
	Book		Company	Publications
1.	Verbal and	R.S.AggarWal	S.Chand Co Ltd	2001
	Non-Verbal		,152 ,Annasalai	
	Reasoning		,Chennai.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Blood Relations
- 2. Assertion and Reason

Group Task:

- 1. Direction Sense Test
- 2. Verification of Truth of the Statement

SEMESTER-VI

Core - XIII	B.Sc. Mathematics	2016 - 2017			
M16UMA13	ALCEDDAIC STRUCTURES II				
Credit: 5	ALGEBRAIC STRUCTURES -II				

Subject description:

This course provides knowledge about sets, mappings, different types of groups and rings.

Goals:

To enable the students to understand the concepts of vector spaces and Dimension of vector spaces. Also the Inner product spaces, orthogonalization process and trace and transpose..

Objective:

On successful completion of course the students should have concrete knowledge about the abstract thinking like Inner product spaces, orthogonalization process by proving theorems.

Unit I

Vector Spaces – Definition – Simple properties – Examples – Homomorphism – Sub space – Quotient spaces – Internal direct sum – External direct sum. (Section 4.1).

Hnit II

Linear Independence – Dimension of a Vector space – Bases - Dimension of Quotient spaces (Section 4.2).

Unit III

Inner product spaces – Definition – Examples – Applications – Orthogonal complement of a sub space – Orthonormal & Orthonormal Basis - Gram Schmidt Orthogonalization process (Section 4.4) .

Unit IV

Linear Transformation – The Algebra of linear transformations - Characteristic roots – Matrices – Canonical forms – Triangular forms(section 6.1 - 6.4)

Unit V

Trace and Transpose – Definitions, Properties – Theorems – Definitions – Properties – Theorems – Cramer's Rule – Problems.(Sections 6.8 and 6.9)

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Topics in	I.N.Herstein	John Wiely,	1975
	Algebra- 2nd		NewYork	
	Edition			

Reference:

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	A first course in	A.R.Vasistha	Krishna	1983
	modern algebra		PrakasanMandh	
			ir, 9, Shivaji	
			Road, Meerut	
			(UP)	
2.	Modern	ViswanathaNai	Emerald	2001
	Algebra	k	Publishers, 135,	
			Anna Salai,	
			Chennai –2.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Dimension of a Vector space
- 2. Canonical forms

Group Task:

- 1. Triangular forms
- 2. Orthonormal & Orthonormal Basis

SEMESTER-VI

Core -XIV	B.Sc. Mathematics	2016 - 2017			
M16UMA14	DEAL ANALYSIS II				
Credit: 4	REAL ANALYSIS - II				

Subject Description:

This course presents nature of functions and mappings like continuity, connectivity, and derivative. It also includes the concept of monotonic functions with properties and Riemann - Stieltjes integral.

Goal:

To introduce the concepts which provide a strong base to understand and analysis mathematics.

Objective:

On successful completion of this course the students should gain the knowledge about the nature of functions mappings.

Unit I

More about open sets – Connected sets – Bounded sets – Totally bounded sets – Complete metric spaces. (Sections 6.1 to 6.4)

Unit II

Compact metric spaces – Continuous functions on Compact Metric spaces – Continuity of the inverse functions – uniform continuity .(Section 6.5 - 6.8).

Unit III

Sets of measure zero- Definition of the Riemann integral – Existence of Riemann integrals – properties of Riemann integrals – derivatives (Section 7.1 to 7.5)

Unit IV

Roll's theorem – Law of Mean – Fundamental theorem of calculus – Improper integrals – Improper integrals (Continued) (Section 7.6 to 7.10).

Unit V

Pointwise convergence of sequence of functions – uniform convergence of sequence of functions – consequences of uniform convergences – convergence and uniform convergence of series of functions (Section 9.1 to 9.4)

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Methods of	Richard R.	IBM Publishing	1970.
	Real Analysis.	Goldberg.	New Delhi.	

Reference Books:

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	A First course	Sterling K	Springer (India)	2004
	in Real	.Barberian.	Private Limited,	
	Analysis .		New Delhi.	
2.	Mathematical	Tom M.	Narosa	2002
	Analysis	Apostel	Publications,	
			NewDelhi	
3.	Real Analysis	M.S.Rangachari	New Century	1996
			Book House,	
			Chennai.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Compact metric spaces
- 2. properties of Riemann integrals

Group Task:

- 1. Fundamental theorem of calculus
- 2. uniform convergence of sequence

SEMESTER-VI

Core - XV	B.Sc. Mathematics	2016 - 2017			
M16UMA15	COMDLEY ANALYSIS				
Credit: 4	COMPLEX ANALYSIS				

Subject Description:

This course provides the knowledge about complex number system and complex functions.

Goal:

To enable the students to learn complex number system, complex function and complex integration.

Objectives:

On successful completion of this course the students should gained knowledge about the origin, properties and application of complex numbers and complex functions.

Unit I

Functions of a complex variable – Limit of a function at a point – Theorems on limits – continuity – Derivatives – Cauchy – Riemann equations – Necessary and sufficient conditions – Analytic function – Examples - Harmonic Function – Properties –To find an analytic function whose real or imaginary part is given.- problems.

Unit II

Bilinear transformations - Definition - Properties - Invariance of cross ratio - Fixed points - problems - Special bilinear transformations - problems - Taylor's series - Laurent's series - problems.

Unit III

Simply connected domain – Cauchy's fundamental theorem – proof using Goursat's lemma – Cauchy's theorem for multiply connected domains – Cauchy's integral formula & Cauchy's formula for the first derivative – Morera's theorem - problems.

Unit IV

Cauchy's Inequality – Liouville's theorem - Fundamental Theorem of Algebra – Maximum modulus theorem – Singularities – Types of singularities – Isolated singularity – Removable Singularity - Pole - Essential singularity – Determination of the nature of singularity.

Unit V

Residue – Definition – Calculation of residues – Cauchy's residue theorem – Contour Integration - Integration around unit circle - Integration along the real axis – Jordan lemma (statement only) - Integration of functions with poles on the real axis - Problems

Text Book

1.	Complex	P.Duraipandian	Emerald	1988
	Analysis	&LaxmiDuraip	Publishers,	
		andian,	135, Anna	
		D.Muhilan	Salai, Chennai	
			-600 002	

References

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Theory and Problems of complex analysis	Murray	Schuam Outline Series	1986
2.	Complex Variables and Applications	Ruel V Churchill	McGraw Hill International Book Company, Newyork.	1986
3	Complex Variable Theory and Application	Kasana	PHI P.Ltd.,	2010

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Cauchy Riemann equations
- 2. Necessary and sufficient conditions
- 3. Analytic function

Group Task:

- 1. Cauchy's Inequality
- 2. Fundamental Theorem of Algebra
- 3. Singularities

SEMESTER-VI

Core - XVI	B.Sc. Mathematics	2016 - 2017
M16UMA16	OPERATION RESEARCH –II	
Credit: 4	OPERATION RESEARCH -II	

Subject Description:

This course gives emphasis to enhance student knowledge in game theory, performance measures of queues, optimal use of Inventory and Network scheduling with application.

Unit - I

Inventory control – Types of inventories – Inventory costs – EOQ Problem with no shortages – Production problem with no shortages – EOQ with shortages – Production problem with shortages.

Unit - II

Definitions - Newspaper boy problem - Discrete and continuous type cases – problems – Inventory model with one and two price break – problems.

Unit III

Queueing Theory – Introduction – Queueing system – Characteristics of Queueing system – symbols and Notation – Classifications of queues – Problems in (M/M/1): $(\infty/FIFO)$; (M/M/1): $(\infty/FIFO)$; (M/M/C): $(\infty/FIFO)$; (M/M/C): $(\infty/FIFO)$ Models.

Unit IV

Introduction – Definition of network, event, activity, optimistic time, pessimistic time, the most likely time, critical path, total float and free float – Difference between slack and float – Phases of critical path in a PERT network – difference between CPM and PERT – Problems.

Unit V

Game Theory – Two person zero sum game – The Maxmini – Minimax principle – problems - Solution of 2 x 2 rectangular Games – Domination Property – (2 x n) and (m x 2) graphical method – Linear programming method Problems.

S.No	Name of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Operations	P.K.Gupta	Sultan Chand	2001
	Research 9th	,Manmohan and	&Sons,Chennai	
	Edition	KantiSwarup		

Reference Books:

S.No	Name of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Operations	S.Kalavathy	Publishing	2002
	Research 2nd		House	
	Edition		PvtLtd,New	
			Delhi	
2.	Operations	P.K.Gupta and	S.Chand&Co	1986
	Research 2nd	D.S.Hira	,New Delhi.	
	Edition			

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Three Assignments can be given from the following topics

- 1. Newspaper boy problem
- 2. Discrete and continuous type

Group Task:

- 1. PERT network
- 2. Domination Property

SEMESTER-VI Skill Based Elective Course IV

SBEC - IV	B.Sc. Mathematics	2016 - 2017
M16UMAS04	NON VEDDAL DEACONING	
Credit: 2	NON-VERBAL REASONING	

Subject Description:

This paper presents the importance of Bank, TNPSC, RRB examinations.

Goals

To enable the students to learn about the basic problems and logical reasoning and various concepts of Non-Verbal Reasoning.

Objectives:

On successful completion of the course the students should have: Learnt the various concept of reasoning. Learnt the decision making statements and to solve the problems based on it

Unit I

Classification-Analytical reasoning.

Unit II

Analogy.

Unit III

Mirror images-Water images.

Unit IV

Completion of incomplete pattern.

Unit V

Cubes and Dice – Dot situation.

S.No	Name of the Book	Author	Publishing Company	Year Of Publications
1.	Verbal and	R.S.AggarWal	S.Chand Co Ltd	2001
	Non-Verbal		,152 ,Annasalai	
	Reasoning		,Chennai.	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Analogy.
- 2. Mirror images Water images

Group Task:

- 1. Completion of incomplete pattern
- 2. Completion of incomplete pattern

SEMESTER-V

Elective - I	B.Sc. Mathematics 20	16 - 2017
M16UMAE01	DICCDETE MATHEMATICS	
Credit: 4	DISCRETE MATHEMATICS	

Unit I

Mathematical Logic – Statements and Notations – Connectives – Negation -conjunction – Disjunction-Statement Formulas and Truth Table – Conditional and Biconditional – Well formed Formulas – Tautologies.

(sections 1.1, 1.2.1 - 1.2.4, 1.2.6 - 1.2.8).

Unit II

Normal Forms – Disjunctive Normal Forms – Conjunctive Normal Forms – Principal Disjunctive Normal Forms – Principal Conjunctive Normal Forms – Ordering and Uniqueness of Normal Forms – The Theory of Inference for the Statement Calculus – Validity using Truth tables – Rules oInference – Consistency of premises and indirect method of proof .

(sections 1.3.1 – 1.3.5, 1.4.1 – 1.4.3).

Unit III

Relations & ordering — Relations — Properties of binary relation in a set -Functions — Definition & Introduction — Composition of Functions — Inverse function — Binary and n - array operations — Hashing Functions — Natural numbers — Peano Axioms & Mathematical Induction — Cardinality.

Unit IV

Algebraic systems – Definition & Examples – Semi groups and monoids –definition and examples – homomorphism of semi groups & monoids – sub semi groups & sub monoids – Grammars – Formal Definition of a Language – Notions of Syntax Analysis. (Sections 3.1.1, 3.1.2, 3.2.1, 3.2.2, 3.2.3, 3.3, 3.3.2, 3.3.3).

Unit V

Lattices as partially ordered Sets: Definition and Examples – some properties of Lattices – Lattices as Algebraic systems – sub Lattices – Direct product and homomorphism. Boolean Algebra: Definition and Examples – subalgebra, Direct product and homomorphism – Boolean Functions – Boolean Forms and Free Boolean Algebras - Values of Boolean Expression and Boolean Functions (sections 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2).

S.No	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Discrete	J.P.Trembly,	Tata McGraw	2001
	mathematical	R.Manohar	Hill, NewDelhi	
	structures with			
	applications to			
	computer			
	science			

Reference Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Discrete Mathematics	Prof.V.Sundaresan, K.S.GanapathySubramani yan, K.Ganesan	Tata McGraw Hill, New Delhi	2000
2.	Discrete Mathematics	L.Lovarz, J.Pelikan, K.Vexztergombi	Springer International Edition	2002
3.	Discrete Mathematics	N. Chandrasekaran M. Uma parvathi	PHI Learning P. Ltd.	2010

SEMESTER-V

Elective - II	B.Sc. Mathematics	2016 - 2017
M16UMAE02	ELEMENTARY NUMBER THEORY	
Credit: 4	ELEWENTARY NUMBER THEORY	

Unit I

Absolute value-Divisibility of integers-Division algorithms-Greatest common divisor-Euclidean algorithm- Least common multiple.

Unit II

Prime and Composite numbers-The sieve of Eratosthenes-Euclid's theorem-Unique factorization theorem-positional representation of an integer-Divisors of an integer-Arithmetic functions-product of divisors.

Unit III

Perfect numbers-Euclid's theorem-Abundant, deficient and amicable numbers-Triangular number-Euler function-Greatest integer functions.

Unit IV

Congruences-Residue classes-complete residue system-Reduced residue system-Magic number-Divisibility tests-linear congruence.

Unit V

Introduction-Fermat's theorem-Euler's Extension of Fermat's theorem-Wilson's theorem-Lagrange's theorem.

Text Book:

S. Kumaravelu and SusheelaKumaravelu, Elements of Number theory, Nagarcoil, January 2002.

Unit I Chapter 2 Section 53 - 57

Chapter 3 Section61 - 76

Unit IIChapter 4 Section 77 - 97

Unit III Chapter 4 Section 98 - 113

Unit IV Chapter 6 Section 155 - 188

Unit V Chapter 7 Section191 - 211

Reference(s)

- 1. David M.Burton, Elementary Number Theory.
- 2. Ivan Niven and H. Zuckerman, An Introduction to Theory of Numbers.

SEMESTER V

Elective - III	B.Sc. Mathematics	2016 - 2017
M16UMAE03	ASTRONOMY	
Credit: 4	ASTRONOMY	

Unit I

Standard formulae in Spherical Trigonometry – Statements only – Celestial sphere – Celestial co-ordinates and their conversions – Diurnal motion - Problems connected with Diurnal Motion - Zones of Earth - Dip – Twilight – Problems.

Unit II

Astronomical Refraction – Tangent and Cassini's formulae – Geocentric parallax – Heliocentric parallax – problems.

Unit III

Kepler's laws of planetary motion – Newton's deductions from Kepler's Laws -Equation of Time – Seasons – Calender – Conversion of time – problems.

Unit IV

Fixing the Ecliptic – Fixing the position of the First point of Aries (Flamsteed's method) - The Moon – Different phases - Metonic cycle – Tides – problems.

Unit V

Eclipses – solar eclipses – Lunar eclipses – General description of solar system and Stellar universe – problems.

S.No	Title of the	Author	Publishing Company	Year of
	Book			Publication
1.	Astronomy	Kumaravelu	S.Kumaravelu,	1984
		and	MurugaBhavanam,	
		SusilaKumarav	Chidambara Nagar,	
		elu	Nagarkoil-2.	

SEMESTER-VI

Elective - IV	B.Sc. Mathematics	2016 - 2017
M16UMAE04	MATHEMATICAL MODELING	
Credit: 4	MATHEMATICAL MODELING	

Unit I

Ordinary differential equation – Linear growth model – Growth of science and scientists – Non-linear growth and decay models – Diffusion of glucose or a medicine in the bloodstream.

Unit II

Modeling in population dynamics – Prey-predator models – Competition models – Multispecies models – Modeling of epidemics – Simple epidemic models – A model for diabeticmellitus.

Unit III

Modeling in second order O.D. E. – Modeling of planetary motion – Motion under central force – Circular motion – Elliptic motion of a satellites – Rectilinear motion.

Unit IV

Modeling through difference equations – Linear difference equation – Obtaining complementary function by use of matrices – Harrod model – cob-web model – Applications of Actuarial science.

Unit V

Modeling through graphs – seven bridge problem – representing results of tournament – Genetic graph – Food web – Communication network – Matrices associated with a directed graph – Detection of clique – Terms of signed graph.

Text Book

J. N. Kapur, Mathematical Modeling , Wiley Eastern Limited, New Age International Pvt. Ltd., Reprint

2013.

Unit I Chapter $2 \S 2.1 - 2.3$, 2.4.2

Unit II Chapter 3 § 3.1.1 – 3.1.3, 3.2.1 & 3.5.1

Unit III Chapter 4 § 4.1.1 – 4.3.1

Unit IV Chapter 5 § 5.2.1 – 5.2.6, 5.3.1, 5.3.2 & 5.3.4

Unit V Chapter 7 § 7.1.2 – 7.3.1

References

- 1. J. N. Kapur, Mathematical Models in Biology and Medicine, New Delhi, 1985.
- 2. R. Olink, Mathematical Models in Social and Life Sciences, 1978.

SEMESTER-VI

Elective - V	B.Sc. Mathematics	2016 - 2017
M16UMAE05	GRAPH THEORY	
Credit: 4	GRAPH THEORY	

Subject Description:

This course focuses on the Graphs, Sub Graphs, Trees, Directed graphs. Italso deals about matrix representation of Graphs.

Goal:

To enable the students to understand the basic concepts of Graph Theory.

Objectives:

On successful completion of this course the students should gain knowledge about Graph Theory.

Unit I

Introduction – Definition – Examples – Degrees – Definition – Theorem 1 and corollary – Theorem 2 and problems – sub graphs – definitions – Theorem – 1 - Operations on Graphs - definition – Theorem - 1 – problems.

Unit II

Introduction – Walks, Trails and paths – Definitions - Theorem – 1,2,3 - Connectedness and components – Definitions – Theorem – 1,2,3 - Definition – Distance – Theorem 1 – Definitions – Cut, Point, Bridge – Theorem 1,2,3,4 – Blocks – Definition – Theorem 1 – Connectivity – Definition – Theorem 1 - Definition.

<mark>Unit III</mark>

Introduction – Eulerian Graphs - definition – Lemmas 1 – Theorem – 1 - Konigsberg Bridge Problem – Corollary I and II – Definition – Theorem - Fleury's Algorithm – Hamiltonian Graphs – Definitions – Theorem 1,2,3 – Lemma – Definition (closure) - Theorem 1,2 – corollary – Theorem.

Unit IV

Introduction – Characterization of Trees – Theorem I – Corollary – Theorem 2 with corollary – Theorem 3 – Center of a Tree – Definition – Theorem.

Unit V

Introduction – Definition - Basic Properties – Definitions – Theorem 1 - Definitions – Theorem 2 - Definitions – Paths and connections – Definition - Theorem 1 - Definitions – Theorem 2 – Digraphs and Matrices – Definition – Theorem 1-Definition – Theorem 2 – Definition – Theorem 3

Text Book

S.No	Title of the	Author	Publishing Company	Year of
	<mark>Book</mark>			Publication
1.	Invitation to	S.Arumugam,	ScitechPublications,Ch	<mark>2001</mark>
_	Graph Theory	S.Ramachandran	<mark>ennai</mark>	

References

S.No	Title of the	Author	Publishing	Year of
	<mark>Book</mark>		Company	Publication
<mark>1.</mark>	Basics of Graph	K.R.Parthasarathy	TMH Publishing	<mark>2001</mark>
	Theory		<mark>company</mark>	
2.	Graph theory	S.Kumaravelu and	SKV Printers	<mark>1996</mark>
		Suseelakumaravelu		
3.	A first course in	A.Chandran	Macmillan Macmillan	1997
	Graph theory		Publishers,	
			Chennai	

Additional Web Resources:

1. en.wikipedia.org/wiki/, 2.mathworld.wolfram.com, 3. wiki.answers.com

Assignments:

Assignments can be given from the following topics

- 1. Operations on Graphs.
- 2. Connectedness and components

Group Task:

- 1. Hamiltonian Graphs
- 2. Digraphs

SEMESTER-VI

Elective - VI	B.Sc. Mathematics	2016 - 2017
M16UMAE06	DDADA DILITY THEADY	
Credit: 4	PROBABILITY THEORY	

Unit – I

Introduction – probability Axioms – conditional probability – Baye's theorem – independent events – problems.

Unit II

Random variable – probability distribution of a random variable – Discrete and continuous variables – problems .

Unit - III

Expected value – Functions of a random variable – Moment generating functions – problems.

Unit - IV

Two point distribution – Binomial distribution – Poisson distribution – Gamma distribution – Normal distribution – Chebychev's inequality – problems.

Unit - V

Regression model – one way analysis of variance – Two way analysis of variance – problems.

Text Books:-

S.No	Title of the Book	Author	Publishing	Year of
			Company	Publication
1.	An Introduction to	V.K.Rokatgi	Wiley Eastern	1985
	Probability Theory and		Publications,	
	Mathematical Statistics		NewDelhi	

Reference Books:-

S.No	S.No Title of the Book		Publishing	Year of
			Company	Publication
1.	Probability theory and	MarekFiseh	John Wiley and	1956
	Mathematical Statistics		sons, NewYork	

ALLIED MATHEMATICS - I

(For B.Sc. Statistics, Physics& Chemistry Major Students admitted from the year 2016 - 2017 onwards)

Allied - I		2016 - 2017
M16UMAA01	ALCEDDA INTECDAL CALCULUS AND EQUIDIED	CEDIEC
Credit: 4	ALGEBRA, INTEGRAL CALCULUS AND FOURIER	SERIES

Unit I

Definition of Matrix – Addition ,Subtraction , Multiplication of Matrices . Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix. Characteristic Equation – Eigen Values and Eigen Vectors – Cayley Hamilton Theorem (Statement only)

Unit II

Polynomial Equations – Imaginary and Irrational roots – Transformation of Equation – Descartes' rule of signs – Problems.

Unit III

Radius of Curvature in Cartesian and polar coordinates – Pedal Equation of a curve – Radius of curvature in P-R Coordinates.

Unit IV

Integral Calculus – Integration by Parts – Definite integrals and its properties – Reduction formula for $\int \cos nx dx$, $\int \sin nx dx$, $\int \sin nx dx$, $\int \cos nx dx$, \int

Unit V

Fourier Series – Definition – To find the Fourier coefficients of periodic functions of period 2Π – even and odd functions – Half range series – problems.

Text Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Algebra Volume-I	T.K.Manickavas agamPillai and S.Narayanan.	Vijay Nicole Imprints Pvt Ltd, # C-7 Nelson Chmbers. 115,NelsonManickam Road, Chennai – 600029.	2004
2.	Algebra Calculus and Trigonometry	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai -600017.	2000

Reference Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Calculus	N.P. Bali	Krishna PrakasanMandhir, 9,	1994.
			Shivaji Road, Meerut (UP).	
2.	Calculus	D. Sudha	Emerald Publishers, 135, Anna	1988
			Salai, Chennai – 600002.	

ALLIED MATHEMATICS - II

(For B.Sc. Statistics, Physics & Chemistry Major Students admitted from the year 2016 - 2017 onwards)

Allied - II	2016 - 2017
M16UMAA02	DIFFERENTIAL EQUATIONS AND LAPLACE
Credit: 4	TRANSFORMS

Unit I

Second order differential equation with constant coefficient - particular intergral of the type e^{ax} , $\cos \alpha x$ or $\sin \alpha x$, x^n , $e^{ax}V$ where V is any function of $\cos \alpha x$ or $\sin \alpha x$ or x or x^2

Unit II

Formation of partial differential equation by eliminating arbitrary constants and arbitrary functions – problems – definitions – complete, particular, singular and general integrals.

Unit III

Solutions of standard types of partial differential equations – clairauts's form.

Unit IV

Laplace transforms – definitions – Standard formula – Elementary theorems – problems.

Unit V

Inverse Laplace transforms – Standard formula – Elementary theorems – problems.

Text Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Differential Equations and Laplace Transforms	Dr.P.R.Vittal	Margham Publications, Chennai -600017.	2002
2.	Allied Mathematics	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai - 600017.	2002
3.	Allied Mathematics	A.Singaravelu	Meenakshi Publishers,120,Pushpa Nagar, Medavakkam, Chennai – 601302.	2002

Reference Books:-

S.No	Title of the	Author	Publishing Company	Year of
	Book			Publication
1.	Engineering	Gunavathi&Thi	Emerald Publishers,	1984
	Mathematics	lkavathy	135,AnnaSalai,Chennai –	
			600002.	
2.	Calculus	N.P.Bali.	Krishna Prakasam	1994
			Mandir,9,Shivajiroad,Meer	
			ut(UP).	

ALLIED MATHEMATICS

(For B.Sc. Statistics, Physics & Chemistry Major Students admitted from the year 2016 - 2017 onwards)

AlliedPractical		2016 - 2017
M16UMAAP01	ALLIED MATHEMATICS DDACTICAL	
Credit: 2	ALLIED MATHEMATICS – PRACTICAL	1

Unit I, Unit II, Unit III First Semester / Third Semester 2 hours /week Unit IV, Unit V Second Semester / Fourth Semester - 2 hour / week.

Unit I

Characteristic equation – Cayley Hamilton theorem – Problems

Unit II

nthderivative – Leibnitz formula for nth derivative – problems

Unit III

Partial differentiation – Partial derivatives of higher order – Homogeneous functions – Problems.

Unit IV

Scalar point function – gradient of scalar point functions – vector point functions – Divergence, curl of a vector point function – Solenoidal and irrotational vectors.

Unit V

Application of Laplace transforms to solve second order differential equations with constant coefficients

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Allied Mathematics	T.K.ManickavasagamPill ai and S.Narayanan.	S.Viswanathan and Co., Chennai	1992
2.	Allied Mathematics	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai -600017.	2002
3.	Allied Mathematics	A.Singaravelu	Meenakshi Traders, Chennai	2002

ALLIED – I - MATHEMATICS

(For B.Sc., Computer science and B.C.A. Major Students admitted from the year 2016 - 2017onwards)

Allied - I		2016 - 2017
M16UMAA03	ALGEBRA, DIFFERENTIAL EQUATIONS AND LAPLACE TRA	NCEODMC
Credit: 4	ALGEBRA, DIFFERENTIAL EQUATIONS AND LAPLACE TRA	INSPORIVIS

Unit I

Definition of Matrix – Addition, Subtraction, Multiplication of Matrices. Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix-problems.

Unit II

Characteristic Equation – Cayley Hamilton Theorem (Statement only) - problems.

Unit III

Radius of Curvature in Cartesian and polar coordinates - Second order differential equation with constant coefficient - particular intergral of the type e^{ax} , $\cos \alpha x$ or $\sin \alpha x$, x^n .

Unit IV

Partial differentiation- partial differential equation by eliminating arbitrary constants and arbitrary functions – problems

Unit V

Laplace transforms – definitions – Standard formula – Elementary theorems – problems.

Text Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Differential Equations and Laplace Transforms	Dr.P.R.Vittal	Margham Publications, Chennai -600017.	2002
2.	Allied Mathematics	Dr.P.R.Vittal .	Margham Publications, 24, RameswaramRoad ,T.Nager, Chennai - 600017.	2002
3.	Allied Mathematics	A.Singaravelu	Meenakshi Publishers,120,Pushpa Nagar, Medavakkam, Chennai – 601302.	2002

Reference Books:-

S.No	Title of the Book	Author	Publishing Company	Year of Publication
1.	Engineering Mathematics	Gunavathi&Thi lkavathy	Emerald Publishers, 135,AnnaSalai,Chennai – 600002.	1984
2.	Calculus	N.P.Bali.	Krishna Prakasam Mandir,9,Shivajiroad,Meer ut(UP).	1994

NON MAJOR ELECTIVE COURSE (Group - A)

(B.A., Tamil,B.Sc., Chemistry and B.Com CA. Major Students admitted from the year 2016–2017 onwards)

NMEC - I		2016 - 2017
M16UMAN01	COMPETITIVE EVAMINATION I	
Credit: 2	COMPETITIVE EXAMINATION - I	

Unit I

H.C.F. and L.C.M.

Unit II

Square Roots and Cube Roots – Averages.

Unit III

Problems on Numbers – Problems on Ages.

Unit IV

Percentages -Surds and Indices

Unit V

Profit and Loss

Text Books:

S.No	Name of the Book	Author	Ppublishing	Year Of
			Company	Publication.
1.	Quantitative Aptitude	R.S.Aggarwal	S.Chand Co Ltd	2001
	For Competitative		,152,Annasalai,	
	Examinations		Chennai.	

[OR]

NMEC - II		2016 - 2017
M16UMAN02	MATDIV ALCEDDA	
Credit: 2	MATRIX ALGEBRA	

Unit I

Definition of Matrix – Addition , Subtraction , Multiplication of Matrices .

Unit II

Transpose of a Matrix – Adjoint of a Matrix – Inverse of the Matrix.

Unit III

Symmetric , Skew symmetric , Hermitian and Skew Hermitian Matrix – Problems.

Unit IV

Rank of The Matrix – Definition – Finding Rank of the Matrix – Problems upto 3x3 Matrix.

Unit V

Cayley Hamilton Theorem (statement only) – Problems only.

S.No	Name of The	Author	Publishing	Year of
	Book		Company	Publications
1.	Allied	Dr.P.R.Vittal	Margham	2000
	Mathematics		Publications,Ch	
			ennai -!7	

NON MAJOR ELECTIVE COURSE (Group - B)

NMEC - III		2016 - 2017
M16UMAN03	COMPETITIVE EVAMINATION II	
Credit: 2	COMPETITIVE EXAMINATION- II	

Unit I

Partnership

Unit II

Simple interest

Unit III

Compound interest

Unit IV

Area.

Unit V

Odd man out &series

S.No	Name of the	Author	Publishing	Year Of
	Book		Company	Publications
1.	Quantitative Aptitude for competitative Examinations	R.S.AggarWal	S.Chand Co Ltd ,152 ,Annasalai ,Chennai.	2001

NMEC - IV		2016 - 2017
M16UMAN04	NUMEDICAL METHODS	
Credit: 2	NUMERICAL METHODS	

Unit I

Solution of algebraic and Transcendental Equations – Bisection Method - Newton – Raphson Method.

Unit II

Finite difference – Definition – First difference – Higher differences – Difference tables – Expression of any value of y in terms of the initial value yo and differences.

Unit III

Newton Forward difference – Simple problems.

Unit IV

Newton Backward difference – Simple problems.

Unit V

Central differences – Properties of the operator D – simple problems.

S.No	Name of the Book	Author	Publishing	Year Of
			Company	Publication
1.	Introductory methods of	S.S.Sastry	Prentice Hall of	1990
	Numerical Analysis – 2nd		India PvtLtd,New	
	Edition		Delhi	
2.	Numerical Methods in	Dr.M.K.Venkataraman	The National	
	Science and Engineering –		Publishing	
	2nd Edition (revised)		Company, Chennai.	

VALUE ADDED COURSES

(For B.Sc., Computer science and B.C.A. Major Students admitted from the year 2016–2017 onwards)

VAC - I		2016 - 2017
M16UVA05	COMPETITIVE EXAMINATION- III	
Credit: 2	COMPETITIVE EXAMINATION-III	

Unit I

Time & Work

Unit II

Pipes & Cistern

Unit III

Time & Distance

Unit IV

Problems on Trains

Unit V

Boats &Streams

S.No	Name of the	Author	Publishing	Year Of
	Book		Company	Publications
1.	Quantitative	R.S.AggarWal	S.Chand Co Ltd	2001
	Aptitude for		,152 ,Annasalai	
	competitative		,Chennai.	
	Examinations			

VAC - II		2016 - 2017
M16UVA06	VEDDAL AND LOCICAL DEACONING	
Credit: 2	VERBAL AND LOGICAL REASONING	

Unit I

Verbal Reasoning

Unit II

Non- Verbal Reasoning

Unit III

Problems on seating Arrangements

Unit IV

Family based on problems

Unit V

Odd Man out series

S.No	Name of the	Author	Publishing	Year Of
	Book		Company	Publications
1.	Verbal and	R.S.AggarWal	S.Chand Co	2001
	Logical		Ltd, 152,	
	Reasoning		Annasalai,Chen	
			nai.	